

7 Perfect Octaves - Hz Doubling 7 times the progression is from 100 to $12,800 \mathrm{~Hz}$.
12 Perfect Fifths (PF) don't exactly equal (don't 'commute' with) 7 Perfect Octaves (PO),
12 Perfect Fifths progress to $12,974.643 \mathrm{~Hz}$.

12 Well Tempered Fifths (WTF) do exactly equal (do commute with) 7 Perfect Octaves (PO),
12 Well Tempered Fifths progress to $12,800 \mathrm{~Hz}$.
This differential is 'structural'; it is called the 'Pythagorean Comma' (PC).
7 PO:12 PF = Ist full PC Cycle \& arrives at Golden Section (GS).

$11 \quad 12$
 'Pythagorean Comma' (PC) emerges to 'Golden Section (GS).

11	E\#	$8,649.756$	$8,542.9751$	1.5000	1.4983	106.7808	0.6115
12	B\#/ C	$12,974.634$	$12,800.0000$	1.5000	1.4983	174.6338	0.6157
13	G	19461.9507	19178.33058	1.5000	1.49831	283.6201	0.6194

When each step-value of the emerging PC is divided by the preceding step-value, step 12 to step 13 gives avalue that is \sim stable at the Golden Section (GS) 0.618 .

It has been suggested that this differential is related to the 2nd Law (the 'entropy' law)

		Perfect 5ths	Well Tempered 5ths	Perfect Octaves	Pythagorean Comma	Golden Section
0	C	100.000	100.0000	100.000	-	-
1	G	150.000	149.8307	200.000	0.1693	0.3335
2	D	225.000	224.4924	400.000	0.5076	0.4447
3	A	337.500	336.3586	800.000	1.1414	0.5003
4	E	506.250	503.9684	1600.000	2.2816	0.5336
5	B	759.375	755.0995	3200.000	4.2755	0.5559
6	F\#	1,139.063	1,131.3708	6400.000	7.6917	0.5718
7	C\#	1,708.594	1,695.1470*	12800.000	13.4528	0.5837
8	G\#	2,562.891	. $2,5339.8417$		23.0489	0.5929
9	D\#	3,844.336	3,805.4628		38.8732	0.6003
10	A\#	5,766:504	5,701.7518		64.7521	0.6064
11	E\#	8,649.756	8,542.9751		106.7808	0.6115
12	B\#/ C	12,974.634	12,800.0000		174.6338	0.6157
13	G	19,461.951	19,178.3306		283.6201	0.6194

$A^{4} B I G B A N G^{0}$ CONJECTURE? VELOCITV INVERSELY PROPORTIONAL tO VOLUME

If NASA's diagram of 'inflation' after the 'Big Bang' is accurate, then the 'shape-rate' of 'time-space' emerging during COSMIC INFLATION seems perfectly to match the emergence of the 'Pythagorean Comma' where initially the speed of inflation is faster than the speed of light, but slowing to 0.618 at the 'Golden Section' [GS], as at the end of the first cycle of 'Perfect Fifths' from the Trinity [Hemiola or 3 in 1 of 'Stringularity'], which is rather what you would expect isn't it? The detail of GS is here: http://www.gci.org.uk/images/PCI.pdf

EXPLOSIVE UPSCALING OF A YOUNG UNIVERSE

 COSMIC INFLATION
TIME = ZERO: BIG BANG

12 Perfect 5ths against 7 Perfect Octaves Reveal the 'Pythagorean Comma'. Trinity, '3 in 1', ['Stringularity'] Golden Section; Source-Code of Creation/Nature?

Vibrations per second or HERZ [Hz] 'rates'

$\begin{gathered} \mathrm{ctog} \\ 100 \\ \text { to } \\ \text { to. } 8307 \\ \text { Herz } \end{gathered}$		$\begin{gathered} \text { D toA } \\ 224.4924 \\ 3 \text { to. } \\ \begin{array}{c} 3.586 \\ \text { Herz } \end{array} \end{gathered}$				Herz					$\begin{gathered} \text { E\# to B\# } \\ 88542.9751 \\ \text { to } \\ 12800.000 \\ \text { Herz } \end{gathered}$
7 Perfect Octaves											
C-C1		C1-C2	C2-C3		C3-C4		C4-C5		C5-C6	C6-C7	
Octave		Octave	Octave		Octave		Octave		Octave	Octave	
100 to		200 to	400 to		800 to		1600 to		3200 to	6400 to	
200 Hz		400 Hz	800 Hz		1600 Hz		3200 Hz		6400 Hz	12800 Hz	

However, Twelve 'Well Tempered Fifths' exactly = 7'Perfect Octaves'.
The difference between the two is a 'Universal Constant' known as the Pythagorean Comma'. After the first fuli cycle of12:7 of these 'Perfect Intervals', e Pythagorean Comma Hz value has settled on the Golden Section value of 61.8%.

11000
Well Tempered 5ths Pythagorean Comma

Perfect 5ths
(0) (0) 18

Perfect 5 ths
Golden Secition
0.382 (1.000 - Golden Section)
0.000

So to get them to 'commute', if the 5ths are Well-Tempered, the resultant Hz values at the 12th 5 th is 12800.000 Hz WeHTempering is an adjustment to ge 7 Perfect Octaves to 'commute' with 12 Perfect 5 ths at this Hz value.

With this adjustment of making each of the semi-tone steps within the Octave exactly equal modulation into any keybecomes practical (vide Well Tempered Preludes \& Fugues J S Bach) as the eason forthe increasingly out-of-tune effect as modulation further from the home key occurs, is remored at the price of making music in all the keys very very slightly out of tune.

The benefit is the vastly rich and diverse development of Western music that happened from the 18th Century onwards, when Well Tempered tuning became the norm.

12 Perfect Fifths against 7 Perfect Octaves reveal the 'Pythgorean Comma'.

C to G	G to D	D to A	A to E	E to B	B to F\#	F\# to C\#	C\# to G\#	G\# to D\#	D\# to A\#	A\# to E\#	E\# to B\#
$\begin{gathered} 100 \\ \text { to } \\ 150 \\ \text { Herz } \end{gathered}$	$\begin{gathered} 150 \\ \text { to } \\ 225 \\ \text { Herz } \end{gathered}$	$\begin{gathered} 225 \\ \text { to } \\ 337.5 \\ \text { Herz } \end{gathered}$	$\begin{gathered} 337.5 \\ \text { to } \\ 506.25 \\ \text { Herz } \end{gathered}$	$\begin{gathered} 506.25 \\ \text { to } \\ 759.375 \\ \text { Herz } \end{gathered}$	$\begin{gathered} 759.375 \\ \text { to } \\ 1139.063 \\ \text { Herz } \end{gathered}$	$\begin{aligned} & 1139.063 \\ & \text { to } \\ & 1708.594 \end{aligned}$	$\begin{gathered} 1708.594 \\ \text { to } \\ 2562.891 \\ \text { Herz } \end{gathered}$		$\begin{aligned} & 3844.336 \\ & \text { to } \\ & 5766.504 \end{aligned}$	$\begin{aligned} & 5766.504 \\ & \text { to } \\ & 8649.756 \end{aligned}$	8649.756 to 12974.634

12 Well Tempered Fifths against 7 Perfect Octaves remove 'Pythagorean comma'.

C to G	G to D	D to A	A to E	E to B	B to F\#	F\# to C\#	C\# to G\#	G\# to D\#	D\# to A\#	A\# to E\#	E\# to B\#
$\begin{gathered} 100 \\ \text { to } \\ 149.8307 \end{gathered}$	$\begin{aligned} & 149.8307 \\ & \text { to } \\ & 224.4924 \end{aligned}$	$\begin{gathered} 224.4924 \\ \text { to } \\ 336.3586 \end{gathered}$	$\begin{gathered} 336.3586 \\ \text { to } \\ 503.9684 \end{gathered}$	$\begin{gathered} 503.9684 \\ \text { to } \\ 755.0995 \end{gathered}$	$\begin{gathered} 755.0995 \\ \text { to } \\ 1131.3708 \end{gathered}$	$\begin{gathered} 1139.063 \\ \text { to } \\ 1695.141 \end{gathered}$	$\begin{gathered} 1695.141 \\ \text { to } \\ 2538.8417 \end{gathered}$	$\begin{gathered} 2538.8417 \\ \text { to } \\ 3805.4628 \end{gathered}$	$\begin{gathered} 3805.4628 \\ \text { to } \\ 5701.7518 \end{gathered}$	$\begin{gathered} 5701.7518 \\ \text { to } \\ 8542.9751 \end{gathered}$	$\begin{gathered} 8542.9751 \\ \text { to } \\ 12800.000 \end{gathered}$
Herz	Herz	Herz	Herz	Herz	1131.3708 $H e r z$	Herz	2538.8417 Herz	3805.4628 Herz	Herz	8542.9751 Herz	Herz

7 Perfect Octaves

C-C1	C1-C2	C2-C3	C3-C4	C4-C5	C5-C6	C6-C7
Octave						
100 to	200 to	400 to	800 to	1600 to	3200 to	6400 to
200 Hz	400 Hz	800 Hz	1600 Hz	3200 Hz	6400 Hz	12800 Hz

Twelve 'Perfect Fifths' almost ≈ 7 'Perfect Octaves'.
However, Twelve 'Well Tempered Fifths' exactly = 7 'Perfect Octaves'.
The difference between the two is a 'Universal Constant' known as the
'Pythagorean Comma'. After the first full cycle of12:7 of these 'Perfect Intervals', the Pythagorean Comma Hz value has settled on the Golden Section value of 61.8\%.

A way to conceptualize and evaluate 'Certainty' and 'Uncertainty' about what changes in relation to what doesn't . . . [perhaps?] ...

1.5

A string of CERTAIN length Pythagorean-Certainty !

Velocity [Herz]
Halve the length and you .
Double the frequency and vice versa
The certain-result is 'an octave'.
2.0
1.5

A string of UN-CERTAIN length Heisenbergian - Uncertainty ?

Velocity [Wave]
Halve the uncertainty on position and you ... Double the uncertainly on velocity and vice versa The result is that uncertainty is shifted from space to time

Stephen Hawking addresses Certainty and Uncertainty in his book 'The Grand Design'.

In the light of this, CBAT suggests the following answer to the science policy-challenge of climate change created by humans: - while there may well be uncertainty in the 'scientific' climate-models, that does not lead to a result where policy-models need to follow-suit and be unintelligently designed.

In view of the risks we face and the potential damages that may be sustained, the need for 'risk-averse' 'precautionary policy' - to do enough soon enough - is an intelligent certainty. Betting on the suspension of the laws of physics steers scientific-scepticism towards the evolution of levels of uncertainty that engender a culture of avoidance, political stupidity and collective disaster.

While this is apparently possible, it seems hardly advisable. Music and performing music both alone and en groupe is acutely 'goal-focused'. Similarly, it makes sense to organize for UNFCCC-compliance in a 'goalfocused' way.

Music is Golden-Section-based and provides a template for this
C\&C is a 'Well-Tempered' framework for playing together in-tune and in time and CBAT is constructed in this way

Because of the self-propagating and uncontrollable nature of positive feedback effects consequent on human impacts on the global climate system, the conclusion to draw from the use of CBAT is that negotiating anything above C\&C at Low Budget rates with accelerated convergence, is an increasingly certain invitation for humanity to evolve into circumstances to which it will become impossible to adapt.

Somehow, overcoming the wave-or-particle 'quantum paradox', - as in a musical framework perhaps - we have to know both where we are and where we're going. Getting runaway climate change and just calling it 'uncertainty' seems like a high price to pay for failing to figure this out.

UNFCCC-compliance is more coordinating acts-of-will, than acts-of-God.

All is inspired by the example of Pythagoras.
His seminal work on 'stringularity' \& the maths of the Golden Section are the 'Deep Simplicity' that all around us underlies and informs all the present Complexity.

The Meeting of the PERFECT FIFTH [8/12 or 0.666] the DIMINISHED FIFTH [7/12 or 0.583]
\& the WELL-TEMPERED FIFTH [7.416407865/12 or 0.618]
The GOLDEN SECTION - is the 'irrational fraction' 0.618033988749895 . . .

Within the 'Perfect' to the 'Well-Tempered' Order, what Moves are Golden Section 'Fractals' of What Doesn't.

For my Friend Leffe.... 23042013

