

7 Perfect Octaves - Hz Doubling 7 times the progression is from 100 to 12,800 Hz.

12 Perfect Fifths (PF) don't exactly equal (don't 'commute' with) 7 Perfect Octaves (PO), 12 Perfect Fifths progress to 12,974.643 Hz.

12 Well Tempered Fifths (WTF) do exactly equal (do commute with) 7 Perfect Octaves (PO), 12 Well Tempered Fifths progress to 12,800 Hz.

This differential is 'structural'; it is called the 'Pythagorean Comma' (PC). 7 PO:12 PF = Ist full PC Cycle & arrives at Golden Section (GS).

11	12	'Pythagorean Comma' (PC) emerges to 'Golden Section (GS									
	12,974.634 YHz	11	E#	8,649.756	8,542.9751	1.5000	1.4983	106.7808	0.6115		
		12	B#/C	12,974.634	12,800.0000	1.5000	1.4983	174.6338	0.6157		
		13	G	19461.9507	19178.33058	1.5000	1.49831	283.6201	0.6194		
									and the second se		

When each step-value of the emerging PC is divided by the preceding step-value, step 12 to step 13 gives avalue that is ~ stable at the Golden Section (GS) 0.618

It has been suggested that this differential is related to the 2nd Law (the 'entropy' law).

	Perfect 5ths		Well Tempered 5ths	Perfect Octaves	Pythagorean Comma	Golden Section
0	С	100.000	100.0000	100.000	-	-
1	G	150.000	149.8307	200.000	0.1693	0.3335
2	D	225.000	224.4924	400.000	0.5076	0.4447
3	Α	337.500	336.3586	800.000	1.1414	0.5003
4	Е	506.250	503.9684	1600.000	2.2816	0.5336
5	В	759.375	755.0995	3200.000	4.2755	0.5559
6	F#	1,139.063	1,131.3708	6400.000	7.6917	0.5718
7	C#	1,708.594	1,695.1410	12800.000	13.4528	0.5837
8	G#	2,562.891	2,539.8417		23.0489	0.5929
9	D#	3,844.336	3,805.4628		38.8732	0.6003
10	A #	5,766.504	5,701.7518	and the second se	64.7521	0.6064
11	E#	8,649.756	8,542.9751		106.7808	0.6115
12	B#/C	12,974.634	12,800.0000		174.6338	0.6157
13	G	19,461.951	19,178.3306		283.6201	0.6194

A'BIG BANG' CONJECTURE? **VELOCITY INVERSELY PROPORTIONAL to VOLUME**

PATENT EVOLUTION SLOW

Double the Length (Stock) Halve the Frequency (Flow)

Evolution Viable Stock: Flow stable at ~ Golden-Section:Pythagorean-Comma?

> **Treble the Length (Stock) Third the Frequency (Flow)**

PATENT EVOLUTION VAST

If NASA's diagram of 'inflation' after the 'Big Bang' is accurate, then the 'shape-rate' of 'time-space' emerging during **COSMIC INFLATION** seems perfectly to match the emergence of the 'Pythagorean Comma' where initially the speed of inflation is faster than the speed of light, but slowing to 0.618 at the 'Golden Section' [GS], as at the end of the first cycle of 'Perfect Fifths' from the Trinity [Hemiola or 3 in 1 of 'Stringularity'], which is rather what you would expect isn't it? The detail of GS is here: http://www.gci.org.uk/images/PCI.pdf

EXPLOSIVE UPSCALING OF A YOUNG UNIVERSE COSMIC INFLATION

TIME = ZERO: BIG BANG

13.8 BILLION YEARS

CREDIT: NASA

12 Perfect 5ths against 7 Perfect Octaves Reveal the 'Pythagorean Comma'. Trinity, '3 in 1', ['Stringularity'] Golden Section; Source-Code of Creation/Nature?

The difference between the two is a 'Universal Constant' known as the 'Pythagorean Comma'. After the first full cycle of 12:7 of these 'Perfect Intervals', the Pythagorean Comma Hz value has settled on the Golden Section value of 61.8%

But the analogue in this is that the FUNDAMENTALS of the first three 'Structural' Fibonacci numbers 1, 2, 3 ... (the 'DICE') slow down to 5, 8, 13, ... settling at the Golden Section (0.618), the value which dominates EVOLUTION (or 'PLAYING the DICE').

12 Perfect Fifths against 7 Perfect Octaves reveal the 'Pythgorean Comma'.											
C to G	G to D	D to A	A to E	E to B	B to F#	F# to C#	C# to G#	G# to D#	D# to A#	A# to E#	E# to B#
100	150	225	337.5	506.25	759.375	1139.063	1708.594	2562.891	3844.336	5766.504	8649.756
to	to	to	to	to	to	to	to	to	to	to	to
150	225	337.5	506.25	759.375	1139.063	1708.594	2562.891	3844.336	5766.504	8649.756	12974.634
Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz
12 Well Tempered Fifths against 7 Perfect Octaves remove 'Pythagorean comma'.											
C to G	G to D	D to A	A to E	E to B	B to F#	F# to C#	C# to G#	G# to D#	D# to A#	A# to E#	E# to B#
100	149.8307	224.4924	336.3586	503.9684	755.0995	1139.063	1695.141	2538.8417	3805.4628	5701.7518	8542.9751
to	to	to	to	to	to	to	to	to	to	to	to
149.8307	224.4924	336.3586	503.9684	755.0995	1131.3708	1695.141	2538.8417	3805.4628	5701.7518	8542.9751	12800.000
Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz	Herz
7 Perfect Octaves											
C - C1		C1 - C2 C2		2 - C3		- C4	C4 - C5		C5 - C6	C6	- C7
Octave		Octave O				tave	Octave		Octave	Oc	tave
100 to		200 to 40				0 to	1600 to		200 to	64(00 to
200 Hz		400 Hz 80				0 Hz	3200 Hz		400 Ha	z 128	00 Hz

Twelve 'Perfect Fifths' almost \approx 7 'Perfect Octaves'. However, Twelve 'Well Tempered Fifths' exactly = 7 'Perfect Octaves'. The difference between the two is a 'Universal Constant' known as the 'Pythagorean Comma'. After the first full cycle of 12:7 of these 'Perfect Intervals', the Pythagorean Comma Hz value has settled on the Golden Section value of 61.8%.

A way to conceptualize and evaluate 'Certainty' and 'Uncertainty' about what changes in relation to what doesn't ... [perhaps?] ...

A string of CERTAIN length Pythagorean - Certainty!

Halve the length and you ... Double the frequency and vice versa The certain-result is 'an octave'.

A string of UN-CERTAIN length **Heisenbergian - Uncertainty ?**

Halve the uncertainty on position and you ... Double the uncertainly on velocity and vice versa The result is that uncertainty is shifted from space to time Stephen Hawking addresses Certainty and Uncertainty in his book 'The Grand Design'.

In the light of this, CBAT suggests the following answer to the science policy-challenge of climate change created by humans: - while there may well be uncertainty in the 'scientific' climate-models, that does not lead to a result where policy-models need to follow-suit and be unintelligently designed.

In view of the risks we face and the potential damages that may be sustained, the need for 'risk-averse' 'precautionary policy' - to do enough soon enough - is an intelligent certainty. Betting on the suspension of the laws of physics steers scientific-scepticism towards the evolution of levels of uncertainty that engender a culture of avoidance, political stupidity and collective disaster.

While this is apparently possible, it seems hardly advisable. Music and performing music both alone and en groupe is acutely 'goal-focused'. Similarly, it makes sense to organize for UNFCCC-compliance in a 'goalfocused' way.

Music is Golden-Section-based and provides a template for this C&C is a 'Well-Tempered' framework for playing together in-tune and intime and CBAT is constructed in this way

Because of the self-propagating and uncontrollable nature of positive feedback effects consequent on human impacts on the global climate system, the conclusion to draw from the use of CBAT is that negotiating anything above C&C at Low Budget rates with accelerated convergence, is an increasingly certain invitation for humanity to evolve into circumstances to which it will become impossible to adapt.

Somehow, overcoming the wave-or-particle 'quantum paradox', - as in a musical framework perhaps - we have to know both where we are and where we're going. Getting runaway climate change and just calling it 'uncertainty' seems like a high price to pay for failing to figure this out.

UNFCCC-compliance is more coordinating acts-of-will, than acts-of-God.

All is inspired by the example of Pythagoras.

His seminal work on 'stringularity' & the maths of the Golden Section are the 'Deep Simplicity' that all around us underlies and informs all the present Complexity.

