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C L I M A T O L O G Y

Past warming trend constrains future warming  
in CMIP6 models
Katarzyna B. Tokarska1*†, Martin B. Stolpe1*, Sebastian Sippel1, Erich M. Fischer1,  
Christopher J. Smith2, Flavio Lehner1, Reto Knutti1

Future global warming estimates have been similar across past assessments, but several climate models of the 
latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently in-
consistent with past assessments. Here, we show that projected future warming is correlated with the simulated 
warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming 
based on consistency with the observed warming. These findings carry important policy-relevant implications: 
The observationally constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is 
over 16 and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14 and 8% lower by 
2090, relative to 1995–2014. Observationally constrained CMIP6 warming is consistent with previous assessments 
based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the 
Paris Agreement target.

INTRODUCTION
Both international climate assessments [e.g., Intergovernmental Panel 
on Climate Change (IPCC) Assessment Reports (1)] and national 
climate scenarios rely heavily on results from multiple climate model 
simulations collected in model intercomparisons. Hence, the reliability 
of and confidence in these model intercomparisons have a wide- 
ranging influence on science and ultimately policy-targeted science 
communication. Model intercomparisons have always featured 
diverging model projections, for example, for the question of how 
much warming to expect for a doubling of global atmospheric CO2 
concentration. However, the spread across such ad hoc model 
ensembles of opportunity is challenging to interpret (2). This is be-
cause not all models are equally plausible (3), and the multimodel 
spread may be partly inconsistent with evidence from observations, 
theory, or process understanding. The range of models may be too 
wide when unrealistic models are included or too narrow when 
models underestimate uncertainties from processes that are not or 
poorly represented. The multimodel mean may be biased high or low 
when many models are biased in the same way or when near-duplicate 
models are included (4). It is therefore essential to relate and, when 
necessary, recalibrate (e.g., by reweighting models) the raw spread 
of such model ensembles, based on other constraints from process 
evidence, past trends, climatology, or probabilistic estimates from 
perturbed physics ensembles, to produce projections (including 
robust uncertainty estimates) of future climate that are consistent 
with our understanding and with observations of the current climate.

The long-term warming range of the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) (5) models was interpreted in 
the IPCC Fifth Assessment Report (AR5) (1) to be unbiased in its 
raw mean, but the 5 to 95% ranges in global temperature projections 
were interpreted as “likely” (>66% probability) to account for struc-
tural model uncertainties. Phase 6 of the Coupled Model Intercom-
parison Project (CMIP6) will inform much of the physical science 

basis for the upcoming Sixth Assessment Report (AR6) of the IPCC 
(6). It includes the latest generation of comprehensive Earth system 
models (ESMs), driven by historical greenhouse gas concentrations, 
and followed by different future greenhouse gas and aerosol con-
centrations according to the Shared Socioeconomic Pathways (SSP) 
scenarios (7). The first models submitted to the archive suggest that 
CMIP6 will span a wider range of warming responses than CMIP5. 
Several ESMs submitted to CMIP6 have equilibrium climate sensi-
tivity (ECS) values (table S1) higher than any of the CMIP5 models 
(8), and a third of CMIP6 models submitted to date (10 of 29 models; 
table S1) exceed the range of 1.5° to 4.5°C for ECS assessed as likely 
(17 to 83% range) in the IPCC AR5 report. Note that for simplicity 
we use the term “equilibrium climate sensitivity,” although the values 
are derived from nonequilibrium conditions and rather represent 
the “effective climate sensitivities” [i.e., a measure of the feedbacks 
during the transient regime that is extrapolated to equilibrium (9)]. 
As a result of higher climate sensitivity values, future climate pro-
jections from these models show stronger future global mean warming 
than the warming previously reported in AR5, although a direct com-
parison is challenging due to a novel generation of emission scenarios 
used to drive the models (10). Some models, for instance, project 
warming of 2.5° to 3°C for scenarios that were designed to be consistent 
with the Paris temperature target of well below 2°C (7). Therefore, the 
critical question arises whether projections of such models with high 
future warming are realistic. If they are, that would result in much 
higher risks and costs of future climate change than previously as-
sessed and imply even faster mitigation to achieve climate targets. If 
the models, on the other hand, are biased high, that would imply that 
climate assessments need to recalibrate the raw ensemble.

A more near-term (transient) global warming that arises after 
70 years of a 1% per year increase in atmospheric CO2 concentration 
is referred to as the transient climate response (TCR). TCR and ECS 
metrics are often used to develop and calibrate simple climate model 
emulators, which are used with integrated assessment models and 
provide policy-relevant information regarding emission pathways 
and related climate responses (11). Estimates of TCR also affect the 
allowed carbon emissions for the Paris Agreement climate target 
(12) and are important for climate projections and risk assessment 
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(13), with substantial economic benefits resulting from narrowing 
down the TCR range (14). Therefore, consistency of the simulated 
TCR range with observational evidence is crucial and potentially 
narrowing the spread of TCR benefits not only the climate science 
community but also many other sectors.

Here, we make use of an emergent relationship between the simu-
lated warming trend in recent decades and projected future warming 
in different emission scenarios, as well as between the simulated 
warming and the more idealized metric of future warming (TCR). 
On the basis of these correlations across models, we constrain the 
ranges of TCR and future warming projections.

RESULTS
For an emergent constraint to be robust, there needs to be an under-
lying physical explanation of why the correlation between the two 
quantities should exist in the first place (15). Here, we use the simu-
lated historical global mean temperature over recent decades as an 
emergent constraint for the future warming in response to increasing 
CO2 concentrations. To first order, the global temperature response 
is proportional to the radiative forcing, and the ratio of global mean 
warming to forcing is equivalent to TCR. As long as the forcing in-
creases, stronger feedbacks imply more warming in both the past and 
the future. Dozens of studies have used this concept to constrain 
ECS, TCR, or future warming from past surface warming, forcing, 
and ocean heat uptake [see (16) for a review]. The relationship be-
tween past and future warming is often obscured through compen-
sation of climate feedbacks and uncertain aerosol forcing, especially 
in the historical period (see below). However, this correlation becomes 
stronger when the greenhouse gas attributable warming (17) domi-
nates the observed warming over recent decades, and it therefore 
constrains future warming, which is also dominated by greenhouse 
gases. The TCR or temperature projections to 2100 may appear to 
be more complex than ECS because they additionally involve ocean 
heat uptake (as the ocean is not in equilibrium). However, because 
such transient warming metrics specifically relate to a time scale of 
about a century, they suffer much less from the change in climate 
feedbacks on longer time scales (9). TCR is, therefore, better con-
strained by the observed warming, by using either energy balance 
arguments or detection and attribution studies. A discussion of the 
mechanisms explaining the correlation between the recent warming 
trends and TCR or ECS is also provided in (18), based on CMIP5 
models and observed warming trends in an earlier historical period 
(1970–2005). While there are a number of other potential challenges 
such as the dependence of the transient response depending on the 
base state, the magnitude and the type of forcing, and the feedbacks 
being different for very short and long time scales [see (16) for a 
review], all of these contributing factors would weaken or destroy 
the emergent constraint rather than improve it, as long as the number 
of models is sufficiently large to avoid spurious correlation.

Ideally, the past period used as an emergent constraint on the 
future warming should thus be as representative as possible for the 
warming response to CO2 and should thus fulfill the three criteria: 
(i) The period is sufficiently long such that the importance of internal 
variability is small; (ii) known modes of lower frequency variability 
in the Pacific and Atlantic Oceans that might influence observed 
global temperatures show small or compensating trends such that 
the observed warming is close to the forced response; and (iii) changes 
in other forcings such as aerosol forcing are small (note that the 

aerosol forcing does not need to be zero; it only needs to be approxi-
mately constant such that the warming is dominated by the change 
in the greenhouse gas forcing). Using the complete historical record 
from 1850 to present day fulfills (i) and (ii), but not (iii). Thus, the 
simulated global mean surface air temperature (GSAT) increase is 
only weakly correlated with TCR and ECS, as the relationship be-
tween warming and climate sensitivity is masked by large uncertainty 
in aerosol cooling (Fig. 1A) (19). Overestimating both the climate 
feedbacks and the aerosol forcing can result in a historical warming 
to present day that is similar as observed, but the temporal agree-
ment with observations is poor, with little simulated warming until 
1980 and too strong warming after [e.g., E3SM1 (20), UKESM1 (21), 
or GFDL-CM4 (22)].

However, after around the year 1980, the global mean aerosol 
cooling trend is very small and consistent across all available CMIP6 
models (−0.01°C per decade from 1981 to 2014 for the CMIP6 
ensemble mean; Fig. 1B), and the observed warming trend is therefore 
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Fig. 1. Global mean temperature anomaly and its decadal trend in CMIP6 
models in response to different radiative forcings. (A) Simulated global mean 
surface air temperature (GSAT) anomaly relative to 1850–1900 in CMIP6 models 
forced with different forcings during the historical period: anthropogenic aerosols 
(blue), natural forcing (solar irradiance and stratospheric aerosol; yellow), well-mixed 
greenhouse gases (GHG; red), and all natural and anthropogenic forcings (historical; 
gray). The shaded area indicates the likely range (17 to 83% percentile). Note that 
the ensemble sizes differ for the experiments, and in particular, the historical ex-
periment is available for a larger set of CMIP6 models. (B) Trend in GSAT from 1981 
to 2014 (as not all models have simulations available until the year 2017), using the 
same set of simulations with different sets of forcings as in (A). The dashed horizontal 
lines indicate multimodel mean decadal trends for each simulation type. Note that 
for CESM2, the aerosol-only simulation was not available.
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expected to be strongly associated with the greenhouse gas warming 
dominated by CO2 and thus the TCR and climate sensitivity (18). 
Internal variability can also affect the warming rate. Pacific variability 
has temporarily slowed short-term warming during the “global 
warming hiatus” from the late 1990s up to around year 2012 
(23, 24). Estimates of the internal component of Atlantic multidecadal 
variability depend largely on how the forced signal is estimated and 
removed (25). It has been argued that decadal Atlantic sea surface 
temperature (SST) variability might largely reflect a forced signal in 
the period after 1980 [e.g., in (26)]. We estimate a Pacific internal 
variability contribution to GSAT of about −0.02°C per decade and 
an Atlantic contribution of about +0.01°C per decade from 1981 to 
2017 (see Materials and Methods; and fig. S1). Compared to the ob-
served global mean temperature increase of about 0.19°C per decade, 
the 1981–2017 warming is therefore unlikely to be strongly influenced 
by lower frequency variability, which is further estimated to partly 
cancel out between the contributions from the Atlantic and Pacific 
Oceans. The warming during this period may therefore act as an 
emergent constraint on future warming (by mid-century, 2041–2060, 
and end of the century, 2081–2100). Because not all CMIP6 models 
provide simulations up to 2017, we also use a second period, 1981–2014. 
Pacific variability dampened the rate of global warming to a some-
what greater extent during this period (fig. S1), and the observed 
warming might therefore slightly underestimate the forced trend. 
We use the latter period to constrain the more idealized TCR metric. 
Sensitivity analysis to different methodological choices is included 
in the Supplementary Materials (figs. S2 and S3 and tables S3 and S4).

We use the mean of two observational datasets [Cowtan and Way 
v2 (27) and GISTEMPv4 (28, 29)], which are both spatially nearly 
complete during the examined periods for the emergent constraint. 
The quoted uncertainty range in the emergent constraint is estimated 
by randomly sampling from the observed distribution (including 
the uncertainties of the trend from internal variability, of structural 
data uncertainty, and of the blending effect that accounts for the 
model-observation differences in the temperature metric they simu-
late or report; see Materials and Methods) and the associated future 
warming estimated by linear regression and the prediction error of 
the fit. This approach of quantifying the uncertainty of the constraint 
warming is similar to that used in (30).

Constraints on the TCR
We find that the recent warming trend (1981–2017) is strongly cor-
related with TCR across CMIP6 models (R = 0.82) and a joint dis-
tribution of CMIP6 and CMIP5 models (R = 0.71; fig. S2). A similar 
correlation (R = 0.74) holds for the period 1981–2014, for which more 
CMIP6 models and ensemble members are available, as it only covers 
the “historical” scenarios as defined in CMIP6. Given the theoretical 
arguments discussed above, this strong correlation (Fig. 2, A to C) 
can serve as an emergent constraint on the TCR. High ECS models 
(defined here as ECS > 4.5°C; shown in dark red color) have diffi-
culties reproducing the observed warming trend (Fig. 2, A to C) 
(20–22). The observationally constrained likely ranges of TCR esti-
mates based on CMIP6, CMIP5, or both combined (Fig. 2, A to C, 
blue rectangle, and D, blue boxes) are consistent but substantially 
narrower than those reported by AR5 of 1.0° to 2.5°C (1), regardless 
of the set of models used (Fig. 2D). The two likely ranges are, however, 
not fully comparable, as different lines of evidence were combined 
in AR5, leading to a broader uncertainty range. The observationally 
constrained TCR likely range (17 to 83%), based on CMIP6 models 

alone, of 1.20° to 1.99°C with a median of 1.60°C is narrower and 
lower than the raw CMIP6 likely range of 1.55° to 2.55°C with a 
median of 1.95°C (Fig. 2D, gray CMIP6 bar, and table S3). Our 
results from CMIP6 observationally constrained TCR (of 1.60°C) 
are consistent with a recent median TCR estimate of 1.67°C derived 
from CMIP5 models (18).

Pacific variability has a larger cooling effect over 1981–2014 than 
from 1981 to 2017 (fig. S1), and accordingly, the observed global 
mean temperature increase is weaker during the first period. The 
forced trend, in turn, is expected to be very similar in both periods 
based on the CMIP6 multimodel mean. Using the 1981–2017 period 
therefore results in a slightly higher observationally constrained 
median TCR of 1.71°C compared to the constraint based on the 
1981–2014 warming (1.60°C) and in a narrower observationally 
constrained TCR likely range of 1.38° to 2.04°C, though based on a 
smaller set of CMIP6 models that had SSP scenario simulations 
available (fig. S2). Depending on the period used, the median TCR 
based on raw CMIP6 models is approximately 16 to 22% higher 
than the observationally constrained median TCR based on CMIP6 
models (Fig. 2D and table S3). We also obtain consistent observa-
tionally constrained TCR estimates when we instead use the CMIP5 
ensemble, or a joint distribution of CMIP5 and CMIP6 models, or if 
we use an alternative observational dataset (Fig. 2D and fig. S3B) (31).

Emergent constraints on ECS based on past warming are less 
straightforward because TCR also depends on ocean heat uptake, 
thus making the relationship between TCR and ECS nonlinear 
(18, 32). In addition, there are large uncertainties associated with 
how the feedbacks change in the future, mostly as a result of changing 
warming patterns (33). Therefore, the correlations of recent warming 
with ECS (Fig. 3) are weaker than with TCR. We do not provide a 
formally constrained range for ECS here, but note that 7 of the 10 
CMIP6 models with ECS larger than 4.5°C simulate recent warming 
that is inconsistent with observed warming trends (outside the ±2 
range, light gray rectangle in Fig. 3). While that does not strictly rule out 
high ECS values, it suggests that these high ECS values are unlikely.

Spatial pattern information supports TCR constraint
Next, we address the question of whether the spatial pattern of 
regional temperature trends for the 1981–2014 period, with global 
mean information removed, might further pinpoint model structural 
differences related to TCR. Such correlation of TCR with the mag-
nitude of regional variations in the warming signal in each model 
would support the argument that the constraint on TCR (Fig. 2C) 
arises from the strength of climate feedbacks that also have an 
imprint on regional warming patterns, rather than from a spurious 
combination of other effects. To do so, we first subtract from each 
model’s 1981–2014 spatial trend pattern its respective global mean 
trend (i.e., trend values in Fig. 2C). This yields for each CMIP5 and 
CMIP6 model a spatial trend pattern that only contains regional 
deviations from the model’s global mean warming trend, but no in-
formation about the global mean warming trend itself. Second, we 
calculate from this set of individual model patterns a multimodel 
mean pattern, which results in a “fingerprint of spatial trend varia-
tions.” This multimodel fingerprint highlights Arctic amplification 
and land-sea warming contrast as two characteristic features, where 
regional warming across models deviates from the global mean 
trend (Fig. 4A). Last, we project each model’s spatial trend pattern 
onto the multimodel mean fingerprint. This last step measures the 
spatial congruence between the multimodel fingerprint and each 
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Fig. 2. Correlation of the simulated warming trend for the period 1981–2014 with TCR. (A) Correlation based on CMIP6 models, (B) based on CMIP5 models, and 
(C) based on the joint distribution of CMIP6 models (circles) and CMIP5 models (triangles). The emergent constraint is based on the mean of two observational datasets 
[Cowtan and Way (27) and GISTEMP (28, 29)], adjusted for the blending effects (gray vertical line). If a model had more than one ensemble member, its ensemble mean 
is shown and was used in the regression. On (A) to (C), the dark gray rectangle shows the ±1 uncertainty range in the observed trends for the period 1981–2014 (with 
the uncertainty range encompassing effects of internal variability, blending, and structural uncertainties), and the light gray rectangle shows the ±2 range (see Materials and 
Methods). The blue rectangle indicates the likely range (>66%) of the emergent constraint on future warming (TCR). The median value is shown by dashed blue line, 
and dotted blue lines indicate the 5 to 95% uncertainty range (see Materials and Methods on how the uncertainty range on constrained TCR was derived). (D) Constrained 
and unconstrained ranges of TCR based on CMIP6 and CMIP5 models [following from (A) to (C)], compared with the IPCC AR5 likely range. Unconstrained ranges (gray 
box plots) are based on raw CMIP models, shown to the left of each box plot by individual dots. Constrained ranges (blue box plots) are based on the emergent constraint 
(as in top panels). The last box plot in (D) shows the IPCC AR5 likely (>66% probability; equivalent to 17 to 83% range) range. Each box plot shows 5 to 95% range, likely 
range, and median value, as illustrated in the legend.
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model’s 1981–2014 regional trend map based only on pattern covari-
ance, similar to standard detection and attribution methods (34), and 
is independent of any global mean warming trends.

This approach of “fingerprint of spatial trend variation” yields a 
correlation of each model’s pattern covariance with TCR (R = 0.59 in 
Fig. 4B, compared with R = 0.64 for the correlation of TCR with 
recent global mean warming in Fig. 2C; using a joint sample of CMIP6 
and CMIP5 models; and if based on CMIP6 models alone, correlation 
coefficient of R = 0.71, compared with R = 0.74 in Fig. 2A). The 
correlation arises because models with the highest TCR produce a 
larger magnitude of the spatial trend pattern shown in Fig. 4A in 
the 1981–2014 period. This, in turn, suggests that the constraint 
on TCR shown in Fig. 2 results from spatial trend patterns that are 
consistent across models and that the models with the highest TCR 
differ not only in global mean warming but also in the magnitude of 
the simulated regional trend pattern from most other models. The 
spatial consistency might arise at least partly due to physical feedbacks 
that are common across the models, related, for instance, to tem-
perature, surface albedo, and cloud feedbacks that contribute to 
Arctic amplification. The projection of observations (global mean trend 
removed) onto the fingerprint (vertical line in Fig. 4B) indicates 
consistently with the global mean analysis in Fig. 2C that models with 
very high TCR (table S1) seem less likely. This is because high- 
sensitivity models simulate a too large magnitude of 1981–2014 
regional warming patterns that is not supported by the observations 
(Fig. 4B). Uncertainty due to internal variability is expected to be 
higher on regional scales; therefore, more models fall within the 
observational estimate (Fig. 4B). In contrast, on global mean scale, 
this uncertainty from internal variability is reduced (Fig. 2), and thus, 
global temperature gives a narrower constraint on response of forcing 

to pattern. Overall, the pattern-based analysis provides important 
complementary and independent evidence that the emergent con-
straint based on the global mean warming trend derived in Fig. 2 
does not emerge from the models because of spurious compensa-
tion of effects but instead has its origin in a consistent pattern-based 
signal across models. As a note of caution, however, we do not 
recommend to derive any emergent constraint to be based only on 
mean-removed trend patterns, because a crucial piece of informa-
tion (the global mean warming trend) is disregarded.

Constraints on future warming in SSP scenarios
The robust correlation between the recent warming trend and TCR (Fig. 2) 
justifies further tests whether such an emergent constraint also arises 
between the simulated recent warming trend and future warming in 
different SSP scenarios. Directly applying the emergent constraint (based 
on recent warming trends) on future warming in SSP scenarios is not 
straightforward because the models account differently for changes in 
non-CO2 forcings. Nevertheless, we find that the recent warming trend is 
strongly correlated with warming by the mid-century and end of the 
century (Fig. 5, with respect to 1850–1900 baseline, and figs. S4 and S5, 
with respect to the 1995–2014 baseline) particularly for a high-emission 
scenario (i.e., SSP5-8.5), which is dominated by greenhouse gas forcing 
(R = 0.92 and R = 0.86 for mid-century and end of century, respectively; 
Fig. 5, A and C). We also find that TCR is highly correlated with the 
warming in SSP5-8.5 and the ambitious mitigation scenario SSP1-2.6 
across the CMIP6 models (R > 0.8 in either scenario; fig. S6; with re-
spect to the 1995–2014 baseline). This justifies using the present-day 
observational trend estimates to constrain future projections.

The observationally constrained likely range of future warming 
(blue rectangles; Fig. 5, B and D) in response to an ambitious mitigation 
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Fig. 3. Correlation of the simulated warming trend for the period 1981–2014 with ECS. (A) Based on CMIP6 models, (B) based on CMIP5 models, and (C) based on 
the joint distribution of CMIP6 models (circles) and CMIP5 models (triangles). Gray rectangles show the ±1 and ±2 ranges of uncertainty in the observed trend for the 
period 1981–2014, based on the mean of the Cowtan and Way (27) and GISTEMP (28, 29) datasets (as in Fig. 2).
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SSP1-2.6 scenario is 1.36° to 1.86°C by mid-century and 1.33° to 
1.99°C by the end of the century with respect to the 1850–1900 baseline. 
These results are generally in line with the Paris Agreement target of 
limiting warming to well below 2°C above preindustrial temperatures 
[yellow lines in Fig. 5, B and D, using Paris Agreement–consistent 
temperature metrics in Fig. 5; (35)]. Most of the models with climate 
sensitivity values outside the AR5 likely range exceed the 2°C 
warming in this scenario. However, their past trend also falls outside 
the observationally constrained range (Fig. 5, B and D) and might 
thus be considered less likely. Similarly, the emergent constraint 
indicates that the strong warming of high ECS models under 
the high- emission scenario is less likely (Fig. 5, A and C), thereby 
constraining the end-of-century warming relative to 1850–1900 to 
a lower median level of 4.15°C than the unconstrained CMIP6 
median warming of 4.69°C. The observationally constrained future 
warming in other scenarios, SSP2-4.5 and SSP3-7.0, is also lower 

than raw (unconstrained) CMIP6 warming in those scenarios (fig. S5 
and table S4).

Comparing warming projections in CMIP6  
and CMIP5 models
Comparing future warming projections in Representative Concen-
tration Pathway (RCP) and SSP scenarios is not straightforward because 
of differences in the radiative forcings in both the historical and future 
periods in corresponding scenarios (7, 36). To allow an approximately 
like-for-like comparison between CMIP5 and CMIP6 future warming, 
we use a simple approach for estimating the CMIP5 responses for 
SSP scenarios, by scaling the future warming in the RCP 2.6 and RCP 
8.5 scenarios (7, 36) by the ratio of the total anthropogenic forcing 
in corresponding scenarios (i.e., we scale RCP 2.6 warming by the 
SSP1-2.6 to RCP 2.6 anthropogenic forcing ratio, and we scale RCP 
8.5 warming by the SSP5-8.5 to RCP 8.5 forcing ratio, calculated 
for the period of interest: mid-century or end of the century). This 
is based on the fact that the global temperature response is approx-
imately proportional to the forcing during the transient phase (37). 
Such scaling results in an approximate range of the SSP scenarios had 
they been simulated by the CMIP5 models. However, because the 
ratio of total anthropogenic forcing for SSP and RCP scenarios is 
close to one, the resulting ranges are very similar to the original CMIP5 
warming (10) and are also close to observationally constrained 
CMIP6 future warming in each corresponding scenario (SSP5-8.5 
and SSP1-2.6, respectively; table S4), shown in Fig. 6. The results 
suggest that most of the difference between the median CMIP5 RCP 
8.5 in IPCC AR5 and the median CMIP6 SSP5-8.5 is due to the 
CMIP6 models simulating stronger warming for a given forcing or 
scenario, (10), however, it is less certain how much influence the 
effective radiative forcing in CMIP6 compared to CMIP5 has changed.

DISCUSSION
Our results show that most models with high climate sensitivity 
(outside the AR5 likely range) or high transient response over-
estimate recent warming trends, with differences that cannot be 
explained by internal variability. This probably leads to future 
warming projections being biased high. Thus, the raw ensemble 
median and spread of future warming in CMIP6 (and therefore 
most other variables that scale to first order with global mean tem-
perature) are not representative of a distribution constrained by 
observed trends, even if some of those models show a more realistic 
representation of processes in individual components than their 
CMIP5 predecessors (20–22). Conversely, CMIP6 models with climate 
sensitivity values that are within the IPCC AR5 likely range show 
warming trends much more consistent with the observations.

We demonstrate that the observed recent warming trends from 
1981–2014 and 1981–2017 (see the Supplementary Materials for 
sensitivity analysis) are highly correlated with TCR across CMIP6 
as well as CMIP5. Given the theoretical background (18) and robust 
correlations across two generations of ESMs, we provide an estimate of 
the observationally constrained likely range for TCR based on CMIP6 
models of 1.20° to 1.99°C (17 to 83% range). The constrained CMIP6 
median TCR (1.60°C) is substantially lower than the raw CMIP6 me-
dian (1.95°C) and is consistent with other recently published TCR es-
timates (18, 38). We also show that the observational constraint on 
TCR remains robust, with high-TCR CMIP6 models being consistently 
different from the remainder of CMIP5 and CMIP6 models, even 

Ensemble mean trend map, 1981 2014 (°C/decade, global mean trend removed from each location) 
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Fig. 4. Pattern covariance between each model’s trend map (global mean trend 
removed) and multimodel mean fingerprint. (A) Multimodel mean deviation of 
regional warming trends from the global mean warming trend (fingerprint of re-
gional trend variation). (B) Correlation of the pattern covariance metric [that is, the 
covariance of each model’s regional trend pattern (global mean removed) with the 
multimodel mean fingerprint shown in (A)] with each model’s TCR. The dashed black 
line in (B) indicates an observational estimate, based on the mean of the observa-
tional datasets [Cowtan and Way (27) and GISTEMP (28, 29)], and the gray rectangles 
indicate estimate of uncertainty in the observations due to internal variability at 1 
and 2 levels (based on the large ensembles simulations listed in table S2). Spatial 
pattern information reveals that high TCR models simulate a large magnitude of a 
regional warming pattern without global mean information.
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Fig. 5. Future warming constrained by the observed warming trend in comparison with the Paris Agreement target. (A) Future constrained warming by mid-century 
(years 2041–2060) in the high-emission SSP5-8.5 scenario. (B) As (A) but in the ambitious mitigation SSP1-2.6 scenario. (C) Constrained warming by the end of the century 
(2081–2100) in SSP5-8.5 scenario. (D) As (C) but in SSP1-2.6 scenario. (E and F) Resulting constrained and unconstrained (raw) ranges, as labeled. Future warming is with 
respect to the 1850–1900 baseline in all panels. Gray rectangles show observed warming trends for the period 1981–2017, using the mean of the observational datasets 
[Cowtan and Way (27) and GISTEMP (28, 29)], with ±1 and ±2 uncertainty ranges. Blue rectangle indicates the likely range (>66%) of the emergent constraints on future 
warming. The median value is shown by dashed blue lines, and dotted blue lines indicate 5 to 95% uncertainty range. Yellow lines indicate the Paris Agreement thresholds 
of 1.5° and 2.0°C, and the yellow shaded area indicates warming interval consistent with achieving the Paris Agreement. Note: Future GSAT warming was adjusted for 
each model to make simulated warming consistent with the definition of a Paris Agreement temperature metric (35). For full model names, see Fig. 2.
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Fig. 6. Future warming in CMIP5 and CMIP6 models (with respect to 1995–2014 baseline), constrained by the observed warming trend (1981–2017). (A) Con-
strained warming in SSP5-8.5 scenario (based on CMIP6 ensemble), in RCP 8.5 scenario, and estimated CMIP5 response to SSP5-8.5 scenario (i.e., CMIP5 scaled by the total 
forcing ratio, for a like-for-like comparison of responses to SSP and RCP scenarios). (B) In SSP1-2.6 scenario. Colored dots on each panel show the full CMIP6 simulated 
range by mid-century (years 2041–2060) and by the end of the century (years 2081–2100), with respect to the 1995–2014 baseline. The panels have different vertical axis 
limits. Note: The baseline for the future warming (T with respect to 1995–2014) is different than in Fig. 5 (1850–1900). See fig. S4 for scatter plots and correlations and fig. 
S5 for constrained warming of the SSP2-4.5 and SSP3-7.0 scenarios. Constrained warming is based on the mean of the observational datasets [Cowtan and Way (27) and 
GISTEMP (28, 29)] as in fig. S4.
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if only the spatial warming pattern is considered (with the global mean 
temperature trend removed). We emphasize that our goal is to pro-
vide a defensible constraint on future warming (i.e., TCR or future 
warming in SSP scenarios), acknowledging that additional predic-
tors might yield an even more robust constraint [e.g., using ocean 
heat content (16, 39)]. Therefore, the past warming trend is only 
one of many possible ways of constraining future warming in cli-
mate models.

The emergent constraints derived here may underrepresent 
uncertainty from the statistical assumption of interpreting the ob-
served trend as a random sample from the same distribution as the 
simulated trends (40). Some processes that are not represented in 
CMIP6 models, but are present in reality, and potential systematic 
biases in the models, could therefore contribute to a wider uncer-
tainty range (40). On the other hand, the estimated uncertainty may 
be too large if the relationship is weakened by models that are 
unrealistic in aspects unrelated to the constraint. The fact that the 
relationships between the past and future global mean warming 
(and TCR) hold over two generations of models and are supported 
by theoretical arguments provides evidence that the emergent con-
straints derived here are robust.

Correlations are similarly high between the recent warming and 
future warming in the SSP scenarios, thus suggesting that future 
warming in the SSP scenarios simulated by models with high climate 
sensitivity is also likely to be biased high. Observationally constrained 
future warming in the SSP5-8.5 scenario, with respect to the 1995–2014 
baseline, by the mid-century (years 2041–2060) is estimated at 1.01° 
to 1.90°C (5 to 95% range), and by the end of the century (years 
2981–2100) is estimated at 2.26° to 4.60°C (5 to 95% range). The 
constrained median warming is 16% lower by mid-century and 14% 
lower by the end of the century than the unconstrained warming 
simulated by the CMIP6 ensemble (table S4). For comparison, the 
observationally constrained warming of the CMIP5 ensemble is 
essentially unchanged from its unconstrained warming, which jus-
tifies the use of the CMIP5 raw mean in AR5.

Despite the expectation that the constraint should be weaker in 
emission scenarios where non-CO2 forcings such as aerosol reduction 
have a substantial contribution to the future temperature evolution, 
the SSP1-2.6 warming is also highly correlated with warming during 
the past decades. Constrained warming in SSP1-2.6, with respect 
to the 1850–1900 baseline consistent with the Paris Agreement (35), 
by mid-century (years 2041–2060) is estimated at 1.36° to 1.86°C 
(likely range), and by the end of the century (years 2081–2100) is 
estimated at 1.33° to 1.99°C (likely range). Our results thus suggest 
that this ambitious mitigation scenario is consistent with meeting the 
Paris Agreement target based on the observationally constrained 
CMIP6 models, while the Paris Agreement target would be exceeded 
by several high ECS models.

Last, we show that the CMIP6 projections are consistent with the 
CMIP5 projections after observationally constraining the CMIP6 
ensemble and accounting for scenario differences, in this case through 
a simple rescaling CMIP5 warming by the ratio of the anthropogenic 
radiative forcings in the respective SSP and RCP scenarios. The dif-
ference of about 0.83°C between the raw CMIP5 RCP 8.5 and raw 
CMIP6 SSP5-8.5 warming by the end of the century (with respect to 
the 1995–2014 baseline) is primarily due to the higher TCR values 
in CMIP6. Given the constraint from past warming, the CMIP6 raw 
model ensemble is therefore likely biased high and is not representative 
of the constrained distribution, while the observationally constrained 

CMIP6 ensemble is generally consistent with the raw and constrained 
CMIP5 estimates.

The high ECS models that are outside of the observationally 
constrained range may still provide very useful information regarding 
earth system behavior at high levels of warming, such as exploring 
climate and carbon cycle feedbacks for large deviations from 
present-day climate, for estimating pattern scaling of extreme 
events (per degree of warming), or a basis of storylines relevant for 
high impacts (13). It also remains important to improve our under-
standing of the regional responses to global warming across the full 
range of models. However, the clustering of models at the high end 
of global mean warming in the ensemble of opportunity needs to be 
accounted for (e.g., through model weighting or rescaling the ensemble) 
to avoid projections that are biased high.

MATERIALS AND METHODS
We make use of available CMIP6 ESMs (6) (table S1) driven by his-
torical forcings for the period 1850–2014 and extended by different 
SSP scenarios (SSP1-2.6 and SSP5-8.5 in the main text; and SSP2-4.5 
and SSP3-7.0 in the Supplementary Materials) until the year 2100. 
We use the 1981–2014 period in Figs. 2 to 4 (for which more model 
simulations were available; table S1) and the 1981–2017 period for 
Figs. 5 and 6, which are based on fewer models that had SSP simu-
lations available. These periods are chosen such that there is little trend 
in aerosol cooling (Fig. 1) and that they are only weakly influenced 
by known modes of internal variability (see below).

For the simulated warming from 1981–2017, we extend the CMIP6 
historical simulations by the SSP5-8.5 scenario and the CMIP5 (5) 
historical simulations by the RCP 8.5 scenario. The warming trend 
until the year 2017 should, however, be very similar across the scenarios 
(41). The CMIP5 scenarios also deviate slightly from observed changes 
(e.g., in stratospheric aerosol or solar variability) (42). As the CMIP6 
models were forced with updated external drivers up to 2014, this is 
less of a concern for the CMIP6 ensemble. Both the CMIP5 and 
CMIP6 ensembles, however, lead to consistent constrained TCR 
estimates (table S3), suggesting that the results are not strongly 
influenced by the differences in radiative forcing. For the models’ output, 
we take ensemble means from models that provide multiple ensemble 
members, which reduce noise due to internal variability in the models.

The observed warming trends are calculated as the mean of two 
spatially interpolated datasets: Cowtan and Way (27) v2 updated with 
HadSST4 (43) and GISTEMP (v4) (28, 29). We also examined the 
Berkeley Earth Surface Temperature (BEST) (31) dataset, but it shows 
nearly identical warming as the Cowtan and Way dataset over the 
two periods considered (fig. S3B). We did not include the BEST 
dataset into the observational mean as it is structurally similar to the 
Cowtan and Way dataset, and both use SST datasets based on HadSST. 
On the contrary, GISTEMP uses a more independent SST dataset. 
We quantify structural data uncertainty of the observed trend by 
the standard deviation (SD) across the 100 members of the Cowtan 
and Way v2 (with HadSST3) dataset.

Some of the model-observation mismatches can be explained by 
the differences in global mean temperature definitions (44). The models’ 
output is the global mean near-surface air temperature (GSAT), while 
observation-based datasets report a blend of land near-surface air 
and sea surface temperatures [here referred to as global blended 
surface temperature (GBST)], which on average have been warming 
slightly slower than GSAT only (44). However, for future climate 
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projections and impact assessments, the GSAT temperature metric 
is more relevant (35). To quantify the blending bias, we use data of 
(44) and compare simulated GSAT with simulated GBST (constructed 
from temperature anomalies). The difference from 1981 to 2017 (or 
1981 to 2014) is an estimate of the blending bias in a model simula-
tion during this period. To allow a like-for-like comparison among 
models and observations, we add an estimate of the blending effect 
(difference between GSAT and GBST) to the GBST observations to 
make them GSAT-like. We regress the simulated GBST increase 
over the examined period against the blending effect over the same 
period across the CMIP5 ensemble. Models that simulate greater 
warming also tend to show a larger blending effect. Using this rela-
tionship, we estimate the blending effect for GBST observations and 
use the prediction error of the linear fit as an estimate of uncertainty. 
For an observed warming trend of about 0.19°C per decade (for the 
period 1981–2017), the blending effect is estimated at 0.014° ± 
0.005°C per decade (1). For 1981–2014, the observed warming is 
slightly lower and accordingly also the estimated blending effect 
(0.013° ± 0.005°C per decade). Both observational datasets considered 
[Cowtan and Way (27) and GISTEMP (28, 29)] are interpolated to 
near-full coverage, and we therefore compare them with the simu-
lated temperature field averaged over the whole Earth.

To quantify the role of unforced internal variability to a poten-
tial difference between observed and simulated trends, we make two 
independent estimates: one based on climate model simulations and 
one based on observed GBST. For the first estimate, we use a mean 
estimate of the SD across the warming trends for the period 1981–2014 
in 12 large initial condition ensembles of CMIP5 and CMIP6 ESMs, 
resulting in a noise estimate of 0.035°C per decade due to internal 
variability (ranging from 0.023° to 0.049°C per decade between the 
models; table S2). Under the assumption that internal variability 
and the forced signal are independent, which is likely the case for 
relatively weak radiative forcing but may break down under larger 
climate change (45), we estimate internal variability from 32 CMIP6 
control simulations (from each simulation separately). The mean 
SD of 34-year-long trends is with 0.037°C per decade similar to the 
smaller set of large ensembles. For the second estimate, we subtract 
both the raw and the scaled CMIP5 and CMIP6 GBST ensemble means 
from the observations from 1900 to 2018 [the multimodel means are 
scaled towards the observations (46)]. These residuals from different 
combinations of the simulated and observed GBST are an estimate of 
internal variability (46), but due to observational and forcing uncer-
tainties (26), we interpret them as an upper estimate. Based on this, 
we estimate an SD of 0.038°C per decade for 34-year-long trends, 
slightly higher, but consistent with the model simulations in agree-
ment with the findings in (46). As a conservative choice, we use this 
last estimate throughout the paper for the 1981–2014 period. For the 
1981–2017 period, the internal variability estimates are slightly lower 
(cf. table S2), and we again use a conservative estimate based on the 
difference between observed and simulated GBST of 0.035°C per de-
cade for the analyses in that period. The overall observational uncer-
tainty is calculated as the sum in quadrature of the above three effects: 
structural uncertainty, internal variability, and uncertainty of the blend-
ing effect. Uncertainty from internal variability dominates the trend 
uncertainty.

The presence of internal variability in the observed GBST may 
bias the central value of the constrained climate response. We estimate 
the contribution of Pacific and Atlantic low-frequency variability to 
GBST using variability analogues (35). To quantify the influence of 

Pacific variability (fig. S1), we search for simulated 40-month-long 
periods from the CMIP5 and CMIP6 control simulations that follow 
the observed (ERSSTv5 and COBE-SST2) SST evolution in the tropical 
Pacific (15°N to 15°S, 180° to 90°W). In addition, we search for an-
alogues that follow the observed (ERA5, MERRA2, and JRA55) wind 
stress evolution over the western tropical Pacific (150°E to 150°W, 
10°S to 10°N). The observational datasets are introduced and de-
scribed in (47–51). For the contribution of Atlantic variability, we 
smooth (with 13-month-long running mean) the observed extra-
tropical North Atlantic (30° to 60°N) SST before selecting 120-month- 
long analogues. Thereby, we remove some of the high-frequency 
variability and highlight the role of the Atlantic variability on a multi-
decadal time scale. Before selecting the best matching variability 
analogues (based on the root mean square deviation), we remove the 
CMIP5 and CMIP6 multimodel means from the observed tropical 
Pacific and extratropical North Atlantic SST to obtain estimates of 
the internal variability component in these regions. In addition, we 
estimate the forced signal in these two regions by scaling the CMIP6 
multimodel mean GBST time series against the observations from 
1900 to 2018 to reduce biases in the simulated warming and also 
remove these scaled multimodel means from the observations (46). 
The models do not simulate substantial trends in wind stress over 
the western tropical Pacific, and therefore, we directly use the 
observed wind stress variability. For the Pacific SST, we further esti-
mate the forced signal with the method in (52). Different to the 
North Atlantic SST and tropical Pacific wind stress, we standardize 
the time series of equatorial Pacific SST before selecting analogues. 
Standardization favors models that under- or overestimate observed 
variability, but it has only a small influence on the results. We interpret 
the results from estimating the forced signal by scaling the GBST as 
a best estimate but show the range from the other approaches in fig. S1. 
Pacific variability has contributed a cooling over both examined periods, 
but less so over 1981–2017, consistent with other studies (fig. S1). 
As the Atlantic contribution is weak and similar in both periods, the 
observed 1981–2017 warming period is probably less influenced by 
internal variability. The central estimate of TCR constrained by 
1981–2014 warming might therefore be slightly underestimated 
(see the “Constraints on the TCR” section).

We use ordinary least squares (OLS) regression for the relation-
ship between the recent simulated warming rate, which consists of 
a forced signal and noise (depending on the ensemble sizes, the 
noise is smaller or larger for individual models) and future warming 
or TCR. The presence of noise in the predictor biases the OLS 
regression slope toward zero, i.e., we underestimate the relationship 
between forced signal and future warming. Errors-in-variables 
regression models, such as total least squares (TLS), allow to account 
for that. Forcing the regression line to intercept with the origin (0,0), 
as in fig. S3A, is based on an assumption of strict linearity between 
the simulated forced trend and the future warming (or TCR). This 
results in a similar TCR estimate of 1.45°C as obtained by TLS, but 
is slightly lower than the OLS estimate without fixing the intercept  
of 1.60°C (using 1981–2014; Fig. 2; constrained TCR; table S3). The 
assumption of strict linearity, however, is not satisfied in ESMs, due 
to imperfect representation of different feedbacks and simulated 
response to forcing, and due to the presence of internal variability. 
Because the observed trend is also influenced by internal variability 
as discussed above, we argue that we are rather interested in estimat-
ing the relationship between simulated warming and future warming 
than the relationship between forced warming and future warming, 
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and OLS results in an unbiased estimate of the former. It is therefore 
generally accepted for predictive modeling (53). A concern, however, 
is that depending on the ensemble size, amounts of variability present 
in the models and in the observations greatly differ. An alterna-
tive approach would be to take one ensemble member per model, 
which, however, neglects a lot of the available data, or to use all en-
semble members and weight them such that each model receives 
the same weight. This approach results in a slightly higher TCR 
estimate of 1.71°C (fig. S3D) than the OLS regression on ensemble 
means. Given the simplicity of OLS and that the results do not de-
pend strongly on the regression approach, we use OLS for the main 
analysis.

The dotted lines around the linear regressions in Figs. 2 and 5 
show the prediction error for the fit. The gray rectangles in Figs. 2 
to 5 represent the observed GSAT trend (i.e., GBST with our estimate 
of the blending effect) and its combined uncertainty from internal 
variability, structural uncertainties in the observational datasets, and 
the blending effect as introduced above (shown are the ±1 and ±2 
ranges; for Fig. 4, only the effect of internal variability is included). 
The blue rectangles on Figs. 2 and 5 represent the uncertainty (likely 
range; 17 to 83%) in the observationally constrained future warm-
ing, and the blue dashed lines show the 5 to 95% ranges. We obtain 
this uncertainty by randomly sampling from the distribution of 
observed warming (gray square) and its associated future warming 
given by the linear regression and its prediction error.

The ECS of each CMIP6 model is here estimated by regressing 
the top-of-atmosphere radiative imbalance against the GSAT change 
during the first 150 years in a CO2-only simulation that quadruples 
the amount of atmospheric CO2 (8). This estimate is scaled by a 
factor of 2 (we neglect that CO2 forcing rises slightly faster than 
logarithmic (54)]. The so-obtained ECS is an effective sensitivity and 
underestimates the actual equilibrium climate response for most 
models (16), but it is consistent with the ECS values reported for the 
CMIP5 ensemble (8). TCR is calculated from the CO2-only simula-
tion, where the atmospheric CO2 concentration increases at a rate 
of 1% per year, centered on the time of doubling of the atmospheric 
CO2, which occurs during simulation year 70 (we use the mean of 
the years 61 to 80). Note that in the GISS-E2-1-G simulations, the 
CO2 concentration only increases until year 70. Therefore, TCR of 
this model is slightly underestimated. To estimate the forced change 
in each idealized CO2-only simulation, we subtract a linear fit to the 
corresponding segment of the unforced control simulation. For 
INM-CM5-0, no control simulation was available at the time of 
writing, and we therefore estimate TCR with respect to the first 5 years 
of its +1% CO2 per year experiment. Its control experiment became 
available after the revisions, and estimating warming with respect to 
the control climate indicates a slightly higher TCR of 1.39°C instead 
of 1.31°C, which does not change our conclusions. The ECS and TCR 
values of the CMIP6 ensemble are reported in table S1. The ECS 
and TCR values for CMIP5 models can be found in table 1 of (8).

CMIP6 models used in this paper are listed in table S1. (Note: 
Not all models had SSP data available. Also, simulations with CAMS- 
CSM1-0 run only to the year 2099, so instead of the change for the 
2081–2100 period, the change for 2081–2099 was calculated in this 
model only.) We make use of the following CMIP5 models (historical 
scenario, followed by RCP 2.6 and RCP 8.5 scenario): ACCESS1-0, 
bcc-csm1-1, bcc-csm1-1-m, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, 
CanESM2, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, 
GISS-E2-H, GISS-E2-R, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, 

IPSL-CM5B-LR, MIROC-ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3, 
and NorESM1-M. For CMIP5 models, we use all available ensemble 
members in the “p1”-only variant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/12/eaaz9549/DC1
Fig. S1. Estimated contribution of Pacific and Atlantic internal variability to GSAT in °C per 
decade during 1981–2014 and 1981–2017.
Fig. S2. Correlation of the simulated warming trend for the period 1981–2017 with TCR.
Fig. S3. Correlation of the simulated warming trend for the period 1981–2014 with TCR, 
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