Biodiversity Conservation: Challenges Beyond 2010

Michael R. W. Rands,1* William M. Adams,2 Leon Bennun,3 Stuart H. M. Butchart,3 Andrew Clements,4 David Coomes,5 Abigail Entwistle,6 Ian Hodge,7 Valerie Kapos,8,9,10 Jörn P. W. Scharlemann,8 William J. Sutherland,10 Bhaskar Vira6

The continued growth of human populations and of per capita consumption have resulted in unsustainable exploitation of Earth’s biological diversity, exacerbated by climate change, ocean acidification, and other anthropogenic environmental impacts. We argue that effective conservation of biodiversity is essential for human survival and the maintenance of ecosystem processes. Despite some conservation successes (especially at local scales) and increasing public and government interest in living sustainably, biodiversity continues to decline. Moving beyond 2010, successful conservation approaches need to be reinforced and adequately financed. In addition, however, more radical changes are required that recognize biodiversity as a global public good, that integrate biodiversity conservation into policies and decision frameworks for resource production and consumption, and that focus on wider institutional and societal changes to enable more effective implementation of policy.

Biodiversity—the variety of genes, species, and ecosystems that constitute life on Earth—provides numerous essential services to society. These include material goods (for example, food, timber, medicines, and fiber), underpinning functions (flood control, climate regulation, and nutrient cycling), and nonmaterial benefits such as recreation (1). Biodiversity can contribute to agriculture through pollination and pest control (2), provide carbon storage and sequestration (1), and positively affect human physical and mental health (3). Biodiversity also secures long-term flows of benefits from nature by providing resilience to disturbance and environmental change (2). These and other economic and social contributions are substantial (4), with recent estimates claiming that the economic value of benefits from biodiverse natural ecosystems may be 10 to 100 times the cost of maintaining them (3).

The imperative to reduce human impacts on biodiversity has wide political recognition. The United Nations Convention on Biological Diversity (CBD), agreed at the 1992 UN Conference on Environment and Development, is one of the most widely ratified treaties in the world. Since 2002, 193 parties to the CBD have committed themselves to substantially reducing rates of biodiversity loss by 2010; this goal was later endorsed by the World Summit on Sustainable Development and incorporated into the UN Millennium Development Goals in 2005 (6). There is an increasing array of national, regional, and international policy mechanisms aimed at biodiversity conservation; for example, 87% of the signatories to the CBD have now developed National Biodiversity Strategies and Action Plans, and thus have frameworks for tackling biodiversity loss at national scales (7).

Millions of people worldwide actively support biodiversity conservation. The Nature Conservancy in the United States and the Royal Society for the Protection of Birds in the United Kingdom have a combined membership exceeding 2 million, and the World Wide Fund for Nature (WWF) network has more than 5 million supporters worldwide. In developing countries, membership of conservation organizations is much smaller than in wealthy nations but is often influential and growing rapidly (8). Of course, support extends well beyond this to a growing range of local, national, and regional civil society organizations and community groups that are involved in activities related to biodiversity, in some cases building on indigenous knowledge of its management (9). Conservation biology has become a recognized academic discipline, with its own journals and postgraduate courses, although most of this capacity remains concentrated in the developed world (10) despite recent growth in developing-world professional training programs (11).

Yet biodiversity continues to decline, even though worldwide conservation efforts are increasing (1, 7, 12). In this article we review the scope and achievements of these efforts, and outline the key challenges that we believe must be

Fig. 1. Community tree nursery in Harapan Forest, lowland Sumatra, Indonesia, where an innovative 2007 law enabled management of logging concessions for ecosystem restoration rather than timber extraction. Harapan’s is the first such license, and the concession now covers nearly 100,000 ha of biodiversity-rich habitat (inset) with restoration being carried out under a joint project of Burung Indonesia, the Royal Society for the Protection of Birds (UK), and BirdLife International. The Indonesian government is committed to expanding the area licensed for forest restoration to 2 million ha by 2020. [Photo: Harapan Rainforest Initiative/M. Lambertini]
met for conservation to succeed post-2010. We draw on a broad range of individual perspectives across the natural and social sciences, as researchers and practitioners from both developed and developing countries.

Conservation Approaches

Conservation paradigms, practices, and policies have shifted over time and have been variably successful (13). In recent decades, traditional approaches to conservation—such as the creation of national parks—have evolved to encompass awareness of the diverse benefits provided by protected areas, the importance of local conservation initiatives and interests in protected area management, and the need to address the opportunity costs of conservation among the rural poor. Ecological restoration, both within and outside protected areas, is being increasingly applied worldwide (14). Actions for species, such as targeted habitat management, removal of invasives, captive breeding, and reintroduction, have yielded notable successes; among many examples, at least 16 bird species extinctions have been prevented by such means between 1994 and 2004 (15).

Since 1992, the global network of protected areas has continued to grow steadily, increasing yearly by an average 2.5% in total area and 1.4% in numbers of sites, and by 2006 covering more than 24 million km² in about 133,000 designated sites (7). Despite some failings, protected areas overall remain a core element of biodiversity conservation (16, 17).

Landscape-scale approaches to reducing biodiversity loss have become increasingly important, especially in wealthier countries (18). These include trans-boundary conservation [e.g., the Great Limpopo Transfrontier Park (19)], payments for environmentally sensitive farming (20) [such as under the Farm Bill in the United States (21) or in the Agulhas National Park in South Africa (22)], and large-scale habitat creation and restoration, as seen, for example, in the Oostvaardersplassen project in the Netherlands (23) and the Harapan Forest in Indonesia (Fig. 1). These initiatives reflect scientific research showing the importance of maintaining suitably managed habitats, which should be large (24) and connected rather than isolated (25), within a hospitable matrix (24).

Many other approaches to biodiversity conservation have been developed, especially those linked to economic benefits, including sustainable consumptive use (26) (Fig. 2) and nonconsumptive uses such as ecotourism (27). Some of these help meet the opportunity costs of conservation, which would otherwise preclude conservation choices among poor rural communities. Mechanisms that provide revenue streams from biodiversity through direct payments for conservation (28) or payments for ecosystems services (29)—for example, through REDD+ schemes (30)—are as yet largely experimental in implementation but have potential for considerable impact. (REDD+ is a mechanism for reducing emissions from deforestation, forest degradation and other activities affecting forest carbon stocks.)

Pressures on Biodiversity

Despite these efforts, biodiversity loss is not slowing down. Recent assessment shows a continued, steady overall decline in wild species’ population sizes and in the extent, condition, and connectivity of many habitats, with accelerating levels of extinction risk and accelerating or steady declines in the benefits people derive from biodiversity (7) (Fig. 3). Although species extinctions are the most conspicuous result of biodiversity loss, it is estimated that distinct subpopulations are becoming extinct some three orders of magnitude faster than species (31).

Pressures on biodiversity continue to increase. The key pressures driving biodiversity loss are overexploitation of species, invasive alien species, pollution, climate change, and especially the degradation, fragmentation, and destruction of habitats (7). Agriculture is an expanding land use in about 70% of countries (32), generally at the expense of biodiversity. Much of the global timber trade is based on unsustainable or illegal logging that destroys biodiversity-rich habitat, as shown across five major timber-producing countries in 2009 where, on average, only 14% of licensed logging area was sustainability-certified, while up to half of all harvesting was illegal (33).

Over-abstraction of water for agriculture, industry, and domestic demands contributes to shifts in agricultural patterns; this imposes greater pressure on biodiversity in other locations, as does soil salinization resulting from irrigation in arid regions (34). Increasing demand for vegetable oils—for food, cosmetics, and biofuels—has put further pressure on biodiversity; oil palm plantations, for example, cover 13 million ha of the humid tropics, and global demand (largely driven by rising consumption levels in developed and emerging economies) is pushing up prices and incentivizing further expansion (35). Remaining terrestrial biodiversity is therefore increasingly confined to fragmented patches separated by expanding cultivation, infrastructure, and residential and industrial development. Marine biodiversity is also under increasing pressure. Steep declines in fish populations and loss of marine habitats have resulted from overexploitation of marine protein, focused on fish at the top of the food chain; increases in poorly managed aquaculture; and direct habitat destruction from coastal development, extractive industries, and pollution (36).

Biodiversity also faces new pressures and novel threats (12). Further anthropogenic climate change and rising human resource demands will pose immense interlinked challenges. Climate change may force species to shift their ranges (37) and disrupts ecological communities (38, 39). Lack of continuous semi-natural habitat or networks of connected habitat patches can restrict the capacity of species to adjust to changing conditions (40). Enhanced levels of atmospheric CO₂ also threaten corals through ocean acidification (41). New initiatives and technologies aimed at mitigating climate change may have negative effects on biodiversity. For example, technological developments in biofuel production from cellulose could drive the planting of high-yielding perennial C4 grasses, such as Miscanthus, on millions of hectares of temperate-zone land not currently used for agricultural production (42). Increasing demands for food production resulting from human population growth and dietary shifts require intelligent and integrated solutions, and severe impacts on biodiversity could occur in the absence of such solutions (43). On top of these reasonably well-known threats are others that are less well understood, including possible threats from microplastic pollution, nanosilver, biochar, and artificial life (44).

Filling Knowledge and Capacity Gaps

Although we now have a great deal of information on the state of biodiversity, the biological and social processes that affect it, and the pres-
Moreover, scientific capacity is not equally shared across the globe, and in particular is concentrated in rich developed countries rather than in the regions that face the most substantial challenges to maintaining and enhancing biodiversity. The proposed establishment of an Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services may help to close knowledge gaps and link science and economics to the policy step-change needed to conserve biodiversity (52). To be effective, though, it must empower developing country institutions and knowledge-to-policy mechanisms, a process requiring sustained investment and support, combined with enhanced linkages and experience sharing among developing countries.

Scaling Up Success
Conservation interventions that are deemed effective, and the conditions under which they work, need to be identified more consistently, and these successes need to be replicated and scaled up in intelligent and evidence-based ways (50). For example, protected areas can be an effective tool for conserving biodiversity, but current networks have considerable gaps; some 20% of 3896 threatened vertebrates are not included in any protected area (53), and many protected areas are under-resourced (54) or weakly managed (35). Although 12% of Earth’s land surface has protected-area status, only 0.5% of oceans and 5.9% of territorial seas have been so designated, and more than two-thirds of critical sites for biodiversity have incomplete protection or none at all (7). New protected areas can draw on a broad range of possible governance models, including community and indigenous conserved area approaches, to fit their particular circumstances (56, 57). Protected areas need to be managed as a coherent network rather than as isolated habitat islands in order to sustain biodiversity, particularly in the face of climate change (39). The challenges of working across administrative and national boundaries are considerable, but experience suggests they are not insurmountable (58).

Scaling up successful approaches requires much greater investment in biodiversity conservation, by at least an order of magnitude (59, 60). National investment is poorly documented but is increasing (and diversifying) in at least some biodiversity-rich countries, such as Mexico (61). International financial investment in biodiversity conservation has been slowly increasing (7) and is estimated to have grown around 38% in real terms between 1992 (when the CBD came into force) and 2006 (62). The sums involved are still tiny relative to the amounts spent on environmentally damaging subsidies (63). They need to be enormously scaled up (59) to benefit those countries that hold the richest biodiversity (64).

Fundamental Challenges Beyond 2010
Filling gaps in our knowledge and building on success, through scaling up and further investment in conservation that works, are critical if we are to gain some breathing space for biodiversity but will not suffice to achieve its maintenance long-term. This year the global community has an opportunity to go much further. The UN has declared 2010 the International Year of Biodiversity and has agreed to hold a special session of this year’s General Assembly devoted to biodiversity, partly in the context of reviewing progress in achieving the Millennium Development Goals. At the 10th Conference of the Parties of the CBD (Nagoya, Japan, October 2010), governments will not only assess whether they met the 2010 biodiversity target, but are expected to adopt a new strategic plan containing a vision for 2050 and new biodiversity targets to be achieved by 2020.

To address the continued global loss of biodiversity, we propose the pursuit of three interconnecting priorities: (i) to manage biodiversity as a public good, (ii) to integrate biodiversity into public and private decision-making, and (iii) to create enabling conditions for policy implementation.

Managing biodiversity as a public good. An appreciation of biodiversity as a public good (65) and of its economic value (66) is, we believe,
central to future effective conservation. Biodiversity loss is rarely the intended consequence of human actions; more often it is an unintended side effect of decisions taken for other reasons—an economic “externality” (67). Biodiversity is a special kind of externality, as the impacts of a particular action are often distant in space and time (e.g., local rainforest loss may affect the global carbon cycle, with consequences for future generations). This makes effective regulation difficult, as no single body has jurisdiction over the world’s biodiversity. It also makes transaction-based solutions difficult, because those who damage biodiversity are often widely separated, in space or time, from those who experience the consequences. Actors have few incentives or opportunities to change their behavior, whether they are smallholder households planning their annual agricultural cycles or large multinational companies determining their corporate priorities. Thus, understanding and managing biodiversity as a global public good, which must be provided through conscious collective choices (68), is fundamental to achieving its conservation (5).

The recognition of biodiversity as a public good is not a new concept, and in recent years economists have made substantial progress in developing valuation techniques that quantify the local and global benefits of biodiversity (69). Measuring the economic values of biodiversity (5) and estimating spatially explicit economic values of services across landscapes to inform management decisions (70) are vital. However, making these values explicit is insufficient to bring about a change in behavior, unless supporting public policies are in place that either reward positive individual actions or penalize harm. Economists need to work more closely with conservationists and policy makers to develop intervention strategies that shift individual actors toward more biodiversity-friendly behavior, using regulatory devices as well as incentives, thereby securing the provision of biodiversity conservation as a global public good.

Integrating biodiversity into public and private decision-making. The value of biodiversity must be made an integral element of social, economic, and political decision-making, as is starting to happen with carbon and climate change. Government, businesses, and civil society all have crucial roles in this transition.

For government, maintenance of stocks of natural capital must become an explicit, accountable, and implemented element of policy. Concern for biodiversity cannot be restricted to a nation’s environment ministry but must extend across all sectors of government, such as treasury, industry, and defense. Policy change will require clear and cost-effective metrics of natural capital consumption and depletion (71) and the development of systems of public accounts that include both sustainability (72) and the specific issue of biodiversity loss (5). Government staff and politicians may need in-service training in biodiversity science and ecological economics, with effective research support. Research investment will need to focus on applied transdisciplinary problems. Government will need to remove perverse subsidies detrimental to biodiversity, such as in agriculture, forestry, and fisheries. Fishing subsidies encourage overexploitation of two-thirds of fish stocks across the globe, threat-
enning both the fishing industry (worth $80 billion to $100 billion per year) and the 27 million people dependent on it (3, 73). Government policy needs to integrate biodiversity conservation, poverty alleviation, and the demands of a sustainable economy (74) to meet the Millennium Development Goals (75).

The actions of the private sector are central to the future of biodiversity, as the CBD recognized in the context of the 2010 biodiversity target. Corporate environmental performance is increasingly important to investors and therefore corporate leaders (76), and many initiatives now exist to address corporate biodiversity impacts in particular business sectors or individual corporations (e.g., in minerals extraction). Yet a recent survey found that only two of the Financial Times Stock Exchange (FTSE) 100 companies recognize biodiversity to be of strategic importance to their business (77). 76 The FTSE companies recognize biodiversity to be of strategic importance to their business (77). Biodiversity lacks the visibility achieved by energy and climate change as issues important to corporate decision makers (77). Consistent government regulation is important in providing a level playing field for corporate environmental innovation and competition, but there are challenges in extending regulation internationally (78).

Civil society organizations have an important role in building tri-sector partnerships with government and business to promote effective action to conserve biodiversity, and in encouraging their supporters as citizens and consumers to demand reform by the government and business. Consumer initiatives such as certification schemes that seek to influence how products are produced across global supply chains (e.g., the Forest Stewardship Council, Marine Stewardship Council, Fair Trade) have a symbolic and educational value, but the real challenge is to transform production and consumption into sustainable patterns so that such arrangements are the norm and not the exception (79). Public education about biodiversity must extend beyond the ecology of near-extinction to explain the links between biodiversity loss and consumption choices. Debates about these links are particularly urgent in emerging markets in countries with rapid economic growth, especially India and China.

Creating enabling conditions for policy implementation. Good decision making at all levels is necessary but insufficient to achieve biodiversity conservation. We believe that policy responses to biodiversity loss generally fail to include a vital step: the establishment of appropriate institutions, governance, and behaviors.

Potential responses to environmental degradation can be placed into three broad tiers (Table 1) (80). Existing efforts to address biodiversity loss have tended to jump from tier 1, the generation of knowledge, to tier 3, the design of appropriate instruments (such as national legislation or international treaties), without ensuring that the enabling conditions are in place.

For example, in the case of direct payments for conservation in developing countries, a sound knowledge base demonstrates how biodiversity can be damaged when it is treated as an open-access resource not managed by common-property institutions, and one proposed response aims to pay resource users directly to achieve conservation goals (28). However, the critical, but often missing, middle tier is the existence of institutions and governance for designing and implementing payments, together with the associated monitoring and regulation (81).

Although REDD+ is not specifically designed to address biodiversity conservation, it has the potential to provide such co-benefits and it illustrates the lack of attention to middle-tier strategies in contemporary environmental policy. With REDD+, a sound knowledge base shows the impacts of forest loss on global carbon emissions. A proposed response aims to use markets and incentives to pay resource users in order to alter their current patterns of land management to stem the loss of forest cover. However, the critical middle tier that has been underemphasized is the need for appropriate institutions and governance that would permit the efficient operation of markets for forest carbon (82). Markets cannot work without clear property rights and enforceable contracts. Having decided that a market for forest carbon is an appropriate instrument for delivering desired outcomes, a range of countries are making considerable efforts and investment to develop relevant institutions and governance structures, but it is far from clear that the regions that have the most potential from a forest carbon perspective are also the ones where conducive institutions and governance structures exist or can be created.

Conservation appears to succeed best where an adequate knowledge base is combined with appropriate institutional structures and patterns of societal behavior that enable the adoption of targeted instruments. Globally, and unsurprisingly, current conservation success is strongly linked to good governance (83). This is evident in the many examples of effective communal management (84, 85) as well as in “traditional” national parks such as Yellowstone in the United States, which was created at a time of rapid state-sponsored scientific exploration and strong federal governance (86).

There are often good reasons for failure to address the enabling factors for appropriate action. Institutions and governance are not easy to change, especially if there are deeply entrenched cultures of patronage and corruption that govern the use and management of natural resources; moreover, governance mechanisms at different levels (local, regional, and national) may differ or even be contradictory (87). Conservationists may not feel that it is appropriate to address wider political problems and may be poorly equipped to do so. However, creating enabling conditions for conservation is an essential component of the solution, requiring conservationists to join with wider civil society groups pressing for governance reform and institutional change. Achieving political recognition of the economic value of biodiversity and its role in underpinning human development and welfare is an important element of this approach. As the obviously artificial but symbolically important 2010 milestone is passed, this imperative can only grow stronger. Within this bigger picture, a key element involves “reconnecting” people—the growing majority who now live in urban areas and lack daily contact with farms or forests—to nature (88). Alongside this, there is a need for a better understanding of the ways in which such a reconnection can be translated into the mobilization of the political constituencies that are necessary to create resilient conservation institutions (89).

Table 1. The three different tiers within which responses to biodiversity loss are typically located.

<table>
<thead>
<tr>
<th>Tier 1: Foundational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge about social and biological dimensions of biological loss</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 2: Enabling</th>
</tr>
</thead>
</table>
| Institutions/ governance
| Social/behavioral patterns |

<table>
<thead>
<tr>
<th>Tier 3: Instrumental</th>
</tr>
</thead>
</table>
| Legislation
| Markets/incentives
| Technology |

Outlook

The challenges of addressing the social and behavioral contexts for biodiversity conservation are daunting. We are far from including biodiversity in our conventional measures of well-being, which focus on wealth creation and internationally recognized estimates of GDP (90). Although there have been attempts to redefine these (including, for instance, the Human Development Index and green national accounts), the mainstream view of well-being and of national development remains focused on narrowly defined economic growth (68). Furthermore, the current recession only strengthens the emphasis on growth. The transition to sustainability will not be easy, but it is central to securing a future for biodiversity (91). Conservation strategies, in concert with other environmental policies, must address seemingly intractable and politically unpalatable issues. In both developed and emerging economies, we need to reduce the carbon and material throughput demanded by current patterns of production and consumption if we are to create viable and democratically acceptable trajectories of contraction and convergence in resource use. In parallel, we must recognize that successful human
development agendas are underpinned by functional ecosystems, and by biodiversity. This is the year in which governments, business, and civil society could decide to take seriously the central role of biodiversity in human well-being and quality of life (92) and to invest in securing the sustainable flow of nature’s public goods for present and future generations.

References and Notes

5. TEEB—The Economics of Ecosystems and Biodiversity for National and International Policy Makers—Summary: Responding to the Value of Nature (Wezel and Hardt, Wesseling, Germany, 2009).
7. S. H. M. Butchart et al., Science 328, 1164 (2010); published online 29 April 2010 (10.1126/science.1181752).
29. D. Pearce, World Econ. 6, 57 (2005).
52. A. Balmford, T. Whitten, Oryx 37, 238 (2003).
60. A. Runte, National Parks: The American Experience (Univ. of Nebraska Press, Lincoln, 1987).
64. R. Layard, Science 327, 534 (2010).
67. The authors are all members of the Cambridge Conservation Initiative (CCI), a strategic collaboration of Cambridge-based conservation researchers and practitioners working together to deliver innovative approaches to understanding and conserving biodiversity. CCI is generously supported by the Arcadia Fund. We thank G. Rands and the referees for their valuable comments on the manuscript.
Michigan State University (MSU) seeks a Director of the recently formed MSU Institute for Cyber-Enabled Research (iCER). Computational sciences and their underlying mathematical theories have become core methodologies in all areas of modern science. iCER aims at capitalizing on significant algorithmic advances and multidisciplinary progress, especially those with interest in microbial genetics and/or bioinformatics. The successful candidate is expected to develop an independent, externally funded research program, and contribute to teaching professional and graduate courses in the areas of performance computing and/or computational science and/or research statement, and a list of four references should be submitted to the iCER search committee at vprgs@msu.edu.

MSU is committed to achieving excellence through cultural diversity. Applications and/or nominations be submitted to the iCER search committee at vprgs@msu.edu.

GET YOUR CAREER QUESTIONS ANSWERED
CAREERS FORUM
www.ScienceCareers.org

NON-TENURED RESEARCH ASSISTANT PROFESSOR, RESEARCH ASSOCIATE, SENIOR POSTDOCTORAL FELLOW
Department of Environmental and Occupational Health
Graduate School Public Health
University of Pittsburgh

Several positions are available in the laboratory of Dr. Valerian E. Kagan (Center for Free Radical and Antioxidant Biochemistry, Department of Environmental and Occupational Health, University of Pittsburgh). Candidates with interests in research on: (1) mass spectrometry/oxidative lipidomics/metabolomics, (2) mass spectrometry of nanoparticles and related particles, (3) lipid signaling in apoptosis and phagocytosis, (4) lipidomics of immune cells in cancer, or (5) mechanisms of nanoparticles interactions with cells in vitro and in vivo—are invited to apply. Participation in ongoing collaborations with laboratories in Sweden, Ireland, and Russia are possible. Candidates should have Ph.D. or M.D. with background in analytical biochemistry/chemistry, molecular/cell biology, redox biochemistry/biophysics or related fields. Experience with mass spectrometry of lipids and other small molecules, analytical chemistry/biochemistry as well as live cell (fluorescence) microscopy, immunoblotting, immunocytochemistry, and DNA transfection are desirable. Interested applicants should send curriculum vitae and names of three references to: Dr. Valerian E. Kagan, e-mail: kagan@pitt.edu. University of Pittsburgh is an Equal Opportunity Employer.