CBAT - the Carbon Budget Anaysis Tool - elaborates the C&C principle rooted in Nature.


As modelled in CBAT, the C&C Principle embraces 4 sequenced DOMAINS

1. CONTRACTION & CONCENTRATIONS - Science, Logic, Risk governs . . . [Click Open & Shut].

[click image the mouse click in animation & press right-left arrows

2. CONTRACTION & CONVERGENCE - Global Constitutional Politics and Diplomacy . . . [Click Open & Shut].

[click image the mouse click in animation & press right-left arrows

3. CONTRACTION & CONVERSION - Green Growth . . . [Click Open & Shut].

[click image the mouse click in animation & press right-left arrows

4. GROWTH & DAMAGES - Causing the problem faster than the solutions? . . . [Click Open & Shut].

[click image the mouse click in animation & press right-left arrows

The 'numeraire' [measurement unit] throughout is 1 tonne carbon, so domains 2, 3 & 4 are governed by that.

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

A link to CBAT is here
A Domain One information page is here

A summary overview of these domains is shown here at three rates
Acceptable [C1] Dangerous [C2] Impossible [C3]

Original animation of the above set out at RIBA conference Venice 2006 here

The objective of the UNFCCC is achieving safe and stable GHG concentrations in the global atmosphere.

So Domain One *Contraction and Concentrations* absolutely governs the commitment to UNFCCC-compliance.
In this sense, the C-BAT analysis isn't simply 'outcome-based', it is *outcome-driven*.

C-BAT is an analysis tool. It is also a planning model. This may seem deterministic, but proceeding this way is deliberate. Faced with the posibility of runaway rates of climate change taking hold, there is no point in achieving 'outcomes' that are 'inadvertently' the result of doing too little too late. We are in danger of doing this by simply continuing the inadequate policy discussion that has so far depended on the combination of opaque and inadequate climate models, ideologically confused and contestable policy models and risk-obtuse economic models that are dense with highly contestable economic assumptions and computations.

We must face this challenge of being UNFCCC-compliant on the basis of organising so that we are determined to do enough, soon enough to be UNFCCC-compliant. This means goal-focused C&C - being in-tune together and in-time to be UNFCCC-compliant.

A crude and temporary mock-up of the C-BAT animation is here
A working but incomplete draft of the main mechanism of Domain One is here
A not for publication 'C-BAT development-page' is here

The detail of this work is still in progress. However, the calculating *sequence* goes from One to Four through *FOUR DOMAINS* starting with *and crucially governed by*: -

DOMAIN ONE: - Contraction and Concentrations

This domain is 'global' and deals with the 'Common Good'. It directly addresses the 'objective' of the UNFCCC [the reason why the treaty exists].

Here, the spread of changing concentration possibilities on any given future carbon-budget is mathematized in the light of certainly changing [and probably lessening] future sink-performance.

The carbon-airborne-fractions Retained/Returned' and the changes in Ocean Acidification that result from these rates will be shown as well.

NB *the primary numeraire in Domains One Two Three and Four is one tonne of carbon.*

The carbon in 1 part per million atmospheric
CO2 by volume [ppmv] equals . . . . . . . . . . . .


. . . 2,13,000,000 tonnes carbon or 2.13 Gigatonnes Carbon
[i.e. Gt C or 2.13 Billion Tonnes Carbon]

Conversely, 1 tonne carbon equals . . . . . . 0.00000000046948357 ppmv atmospheric CO2

Using this numeraire for both CO2 emissions & concentrations makes Carbon-Budget Analysis easily doable.
In Domains Three and Four the *the dollar-numeraire remains subject to this CBAT-numeraire.*

As things stand with CBAT model development so far, 400 different carbon-path-integrals have been computed using this numeraire. These are now being animated in a user-friendly way with all these derived details that have been quantified and this makes risk analysis of all the future rates of change much easier to compare and evaluate.

Composite of the 6 DOMAIN ONE images below here

A static concept-view of the C-BAT User-Interface [Domain One High Budget] is shown here . Overall, there are three Budgets in all [High, Medium & Low] not shown, with two ways of measuring feedbacks [Integrated & Segregated]. The animated version of this gives users 'Budget Control' with the drag up/down slider on the right-hand side.

This takes the carbon-emissions budget and concentrations above the budget and concentrations @ CAF-50% in 40 steps up and below the budget and concentrations @ CAF-50% in 40 steps down.

Concentrations, temperature, sea-level rise and ocean CO2 deposition/acidification are 'consequences' of this'Budget Control' and all values [sourced] for these are shown on clocks that will move in synch with the slide use for 'Budget Control'.

Domains two, three and four are governed by user choices made in domain one and these Domains will exchange with the centre-stage of position [here of Domain one] when their icons on the left are touched. Then the Slider over the years becomes active e.g. selecting and measuring and weighing the convergence-rates/weights/dates for the contraction rate chosen from Domain one.

The overall animation in still in preparation. A taster is here [load and re-load this file].

Users are invited to select the Domain One path-integral they feel successfully relates to achieving UNFCCC-compliance and to hold this choice as they then progress through Domains two, three and four.

As twenty years of negotiations at the UNFCCC now clearly show, not proceeding in a manner governed by this sequence generates an increasingly chaotic process that is less and less governed by the demands of UNFCCC-compliance.

DOMAIN TWO: - Contraction and Convergence

This domain is international. It address the 'Common but Differentiated Good' of negotiating to share what is left in the future global carbon budget in a rational manner. For all the contraction rates in Domain One, all convergence rates are being computed and animated, again in a user-friendly way.

Population growth rates and the effect of a population base-year in the C&C accounts are addressed here. Also convergence procedures derived from C&C such as Common But Differentiated Convergence, Cap and Dividend, Cap and Share and Greenhouse Development Rights are compared with C&C.

Users are invited to select the convergence-rate they feel relates to the path-integral already chosen in Domain One and so successfully achieving UNFCCC-compliance and hold this choice through Domains three and four.

DOMAIN THREE: - Contraction and Conversion

This domain is technological and economic and explores the options for sustaining or not sustaining present levels of production and consumption. It is in essence the position where C&C without 'Green Growth' of some kind is useless, but 'Green Growth' without C&C is dangerous.

Users are invited to evaluate in the Domain subject to the choices already made in Domains One and Two.

DOMAIN FOUR: - Damages and Growth

Domain Four is really where economics is relevant. It is the domain of climate-damages versus conventional 'growth' based on Munich Re trends over the last forty years. All rates shown are functions of results and choices made in Domain One.

So users can see whether their efforts have passed the crucial test of doing enough soon enough to achieve UNFCCC-compliance. If not they can go back and re-run their analysis based on different choices being made in Domains One Two and Three.


A crude and temporary mock-up of the C-BAT animation is here
A not for publication 'C-BAT development-page' is here
An example of Domain One related to the UK Climate Act is here

  • This is a hint of what CBAT model-animation starts looking at source-sink relations -
    [budget eg is UK Climate Act as shown above] . . . [mouse-slide little blue rectangle on the right up and down].

  • Policy Management of Positive to High Risk of Danger
    To Avoid High Concentrations Emissions-Contraction must be fast and low . . . [due to strong positive feedback] . . .

  • Policy Management of Negative to Low Risk of Danger
    To Avoid fast and Low-Emissions-Contraction, Concentrations can rise . . . [assuming feedback is negative] . . .

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player




In this domain, the 'climate-models' used by governments are unrealistically conservative and potentially very misleading.

They have generated a policy debate that assumes it is possible to achieve future 'equilibrium' for CO2 concentration in the atmopshere [UNFCCC-compliance] at values that vastly exceed the deep historic values, showing over a period going back around a million years.

These models promote talk of even achieving equilibrium values of 1,000 Gt C atmospheric carbon or more, against a deep historical average of less than half that value [490 Gt C] around which homeorhetically corrections to equilibrium were apparent over millennia. We've decisively broken that pattern already.

In other words, consideration of everything that follows in the analysis coming here, should be in the context that for 1,000,000 years 'Before The Present' [BTP], ice-core samples of CO2 concentrations show that the average was just 230 PPMV [490 Gt C] as the mid-point between fluctuations of 180 PPMV [383 Gt C] and 280 PPMV [596 Gt C] as ice-ages and interglacials periods alternated - see here second section.

In 2012, the current value is 837 Gt C is already nearly twice that deep-historical average. This is higher than any value in the past 1,000,000 years. Moreover, we drove the concentrations up to that record-high value in the mere 200 years since we started burning oil, coal and gas since the industrial revolution began in 1800. In paleo terms that's the twinkling of an eye, for which there's no 'rate-precedent' anytime, anywhere.

The relationship between source-emissions, atmospheric-concentrations and sink-emissions is like a tap [tap-flow] and bath [rising-stock] and a plug-hole [drain-flow] - see here first section. For UNFCCC-compliance, this can and must be measured. Here, we must demonstrate and emphasize that a tonne of carbon in CO2 emissions is the same tonne by weight of carbon in rising atmospheric CO2 concentrations and the tonne returning to the 'natural sinks'. To have any chance of UNFCCC-compliance, these contraction:concentrations must be accounted for more rigorously than has been the case revealed in the IPCC's recorded modelling efforts so far.

To this end it helps to recognize that concentrations have routinely been measured in parts per million by volume [ppmv] of CO2 while emissions of CO2 to the atmosphere weighs have routinely been measured in tonnes of carbon. This weight:volume ratio has made it quite difficult to functionally relate emissions to concentrations.

However, 1 ppmv CO2 weighs 2,130,000,000 tonnes of carbon [2.13 Gt C]. Using this to convert ppmv to a weight of carbon makes it much easier to relate emissions to concentrations and then to do coherent analysis of the effect of different rates of 'sink failure'.

This is the basis of what follows in DOMAIN ONE of CBAT analysis.

Moreover, rising atmopshere concentrations of CO2 are a function of emissions of CO2 from mostly oil, coal and gas burning buried in mines deep underground as 'fossil-carbon'. Around half these emissions stay in the atmosphere [adding up over time]. This is known as the 'Constant Airborne Fraction' [CAF]. The other half 'return'. This means that the carbon tonnes return from the atmosphere split roughly 50:50 between the biological sinks on the land and in the ocean.

Crucially, these 'returning emissions' don't go back down the coal mines and the oil wells. They accumulate in the theoretically increasing growth of biomass on land and in the oceans, where they accumulate and increasingly lower pH, or raise ocean acidity eons before they may eventually become fossil carbon once more.


4 images follow: -

[1] 500 Gt C budget
[2] Budget with CAF 50, with an outcome value of 508 PPMV [1082 Gt C] & 100% with 626 PPMV [1332 Gt C].
[3] Budget + CAF ref + 41 incremental increases of CAF +
[4] Budget reductions equivalent to 41 incremental decreases in CAF +

Stage [4] has the effect of significantly decreasing the budget path-integral [the budget added up over time].

An incomplete animation mock-up follows that.

To generate the curves for C-BAT, from code in ActionScript, I think we�ll need an xml page of an example such as a a 100-year budget with a [weight] value for each year with a total weight of e.g. 500 Gt C so its image looks like this -

The annual budget values for this e.g. as follows: -
Carbon Budget Annual Emissions Values 2010 - 2110 - Touch for Drop-Down Table
2011 08.88 Gt C
2031 9.84 Gt C
2051 6.31 Gt C
2071 2.63 Gt C
2091 0.56 Gt C
2012 09.12 Gt C
2032 9.71 Gt C
2052 6.10 Gt C
2072 2.48 Gt C
2092 0.51 Gt C
2013 09.36 Gt C
2033 9.58 Gt C
2053 5.90 Gt C
2073 2.34 Gt C
2093 0.46 Gt C
2014 09.57 Gt C
2034 9.43 Gt C
2054 5.70 Gt C
2074 2.20 Gt C
2094 0.41 Gt C
2015 09.78 Gt C
2035 9.28 Gt C
2055 5.50 Gt C
2075 2.07 Gt C
2095 0.37 Gt C
2016 09.96 Gt C
2036 9.13 Gt C
2056 5.30 Gt C
2076 1.93 Gt C
2096 0.34 Gt C
2017 10.13 Gt C
2037 8.96 Gt C
2057 5.11 Gt C
2077 1.81 Gt C
2097 0.31 Gt C
2018 10.29 Gt C
2038 8.80 Gt C
2058 4.91 Gt C
2078 1.69 Gt C
2098 0.28 Gt C
2019 10.43 Gt C
2039 8.62 Gt C
2059 4.72 Gt C
2079 1.57 Gt C
2099 0.25 Gt C
2020 10.55 Gt C
2040 8.45 Gt C
2060 4.53 Gt C
2080 1.46 Gt C
2100 0.23 Gt C
2021 10.55 Gt C
2041 8.26 Gt C
2061 4.34 Gt C
2081 1.35 Gt C
2101 0.21 Gt C
2022 10.53 Gt C
2042 8.08 Gt C
2062 4.15 Gt C
2082 1.25 Gt C
2102 0.19 Gt C
2023 10.50 Gt C
2043 7.89 Gt C
2063 3.97 Gt C
2083 1.16 Gt C
2103 0.18 Gt C
2024 10.46 Gt C
2044 7.70 Gt C
2064 3.79 Gt C
2084 1.07 Gt C
2104 0.17 Gt C
2025 10.41 Gt C
2045 7.50 Gt C
2065 3.61 Gt C
2085 0.98 Gt C
2105 0.16 Gt C
2026 10.34 Gt C
2046 7.31 Gt C
2066 3.44 Gt C
2086 0.90 Gt C
2106 0.16 Gt C
2027 10.26 Gt C
2047 7.11 Gt C
2067 3.27 Gt C
2087 0.82 Gt C
2107 0.15 Gt C